
Order Σ-invariants,
Novikov homology,

and nilpotent groups

Zur Erlangung des akademischen Grades eines

Doktors der Naturwissenschaften

von der KIT-Fakultät für Mathematik des
Karlsruher Instituts für Technologie (KIT)

genehmigte

Dissertation

von

Kevin Klinge

Tag der mündlichen Prüfung: 27. März 2024
1. Referent: Prof. Dr. Roman Sauer
2. Referent: JProf. Dr. Claudio Llosa Isenrich



This work is licensed under a Creative Commons
“Attribution-ShareAlike 4.0 International” license.

https://creativecommons.org/licenses/by-sa/4.0/deed.en
https://creativecommons.org/licenses/by-sa/4.0/deed.en
https://creativecommons.org/licenses/by-sa/4.0/deed.en


Introduction
It is a curious fact about finitely generated groups that while every quotient of a finitely
generated group is again finitely generated, the same cannot be said about subgroups of
finitely generated groups. Consider for example the free group F2 on two generators and
any surjective map Φ: F2 ↠ Z. Then the kernel kerΦ is a normal subgroup of F2 which
is generated as a normal subgroup by some g ∈ F2. But kerΦ is not finitely generated
as a group. This gives rise to two general questions about finitely generated groups G:

1. If N ⩽ G is a normal subgroup, how can we decide if N is finitely generated?

2. Does there exist a finitely generated normal subgroup N ⩽ G such that G/N ∼= Z?

An answer to the first question in case G/N is abelian is given by Bieri, Neumann
and Strebel in [BNS87] in form of the Σ-invariant. It is a set containing certain maps
G → R. Bieri, Neumann and Strebel show that N is finitely generated if and only if
Σ1(G) contains every map with N contained in its kernel.

An important characterisation of the Σ-invariant is due to Sikorav [Sik87]. He provides
an equivalent criterion for a map being in Σ1(G) via vanishing of the homology of G.
The coefficient ring Sikorav uses is the Novikov ring from [Nov81].

Novikov’s original motivation was to generalise Morse theory, hinting that there is
a link between Morse theory and Σ-invariants. Indeed, Bestvina and Brady show in
[BB97] that seeing a map Φ: G ↠ Z as a height function on the Cayley graph, finite
generatedness of kerΦ is equivalent to ascending and descending links being connected.

Let us now elaborate on the second one of the above questions. We call a group
algebraically fibred if the answer to the second question is positive for that group. Kielak
shows in [Kie20] that a group that is virtually RFRS is virtually algebraically fibred
if and only if its first `2-Betti number vanishes. In the proof, the Σ-invariant and its
characterisation via Novikov homology play a crucial role.

Another essential tool in Kielak’s proof is the Atiyah conjecture. In [Ati76], Atiyah
conjectures that all `2-Betti numbers of torsion-free groups are integers. While the
conjecture remains open in general, Kielak shows that it holds for RFRS groups. Linnell
provides in [Lin93] a reformulation of Atiyah’s conjecture to the question of whether a
certain ring D(G) is a division ring. In this case, figuring out the `2-Betti numbers of
G becomes a question about the dimensions of certain homology groups of G as D(G)-
vector spaces. Kielak uses this in his proof to bridge the gap between `2-Betti numbers
and Novikov homology.

Kielak’s theorem goes back to a question of Thurston: In [Thu82], he asks if every
hyperbolic 3-manifold has a finite-sheeted cover that fibres over the circle. By a theorem

3



of Stallings’ [Sta62], this is equivalent to the corresponding map between fundamental
groups having finitely generated kernel.

RFRS groups were introduced by Agol in [Ago08], providing a criterion to answer
Thurston’s question for certain 3-manifolds: They fibre virtually if their fundamental
group is RFRS. Kielak’s theorem transfers Agol’s result to a purely algebraic setting.

The primary motivation for this thesis is to generalise Kielak’s fibration theorem
to a larger class of groups. An important observation is that every finitely generated
abelian group is RFRS, but non-abelian nilpotent groups are not RFRS. The definition
of RFRS requires that certain quotients are abelian. In this work, we instead require
those quotients to be nilpotent, thereby enlarging the class of RFRS groups to a class
we call RFN, which in particular contains all torsion-free nilpotent groups.

In order to approach a generalised fibration theorem for RFN groups, we construct
analogues of the Σ-invariant and Novikov homology for nilpotent quotients instead of
abelian ones. Thereby, we answer the first of the two questions above in this case. Our
approach is to replace maps to R with partial biorderings on G.

A similar idea to study orders on a group and thereby characterise the Σ-invariant can
be found in [Alo+22]. Notably, these authors use total left orderings instead of partial
biorderings.

Another approach to get around the restriction that G/N is abelian is due to Heuer
and Kielak in [HK22]. There, the authors replace homomorphisms G → R with quasi-
morphisms. They also provide an analogue of the Σ-invariant in this setting and prove
that it can be characterised via vanishing of Novikov homology.

In [Ren88], Renz generalises the Σ-invariant to higher dimensions and shows that
it characterises higher finiteness properties of normal subgroups. This generalisation
transfers to fibrations: In [Fis22], Fisher shows that there exists a subgroup N ⩽ G of
type FPn such that G/N ∼= Z if and only if the first n `2-Betti numbers of G vanish.
[HK24] is a very recent release where Hughes and Kielak show that for groups G of type
FPn(Q), the n’th Σ-invariant is even empty if the n’th `2-Betti number of G does not
vanish.

The higher Σ-invariants are only of minor importance in this thesis, but it seems likely
that much of the theory we introduce transfers analogously to a higher dimensional
setting.

Another vital topic in Kielak’s proof is the Ore localisation introduced in [Ore31]. In
order to understand `2-Betti numbers as the dimension of D(G)-vector spaces, one first
needs to understand the Linnell ring D(G). It is the division closure of the group ring
ZG in the Ore localisation of the von Neumann Algebra L(G). The Ore localisation need
not exist, but if it does, it is a particularly nice description of the universal localisation
of a ring R.

Let us now give an overview this of thesis’ structure and main results. We start
in Part I by reviewing the most important foundational material and providing some
helpful examples we will use throughout the later parts.
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Part II focuses on the Ore localisation. While the description of the Ore localisation
is convincing, the actual proof that it is well-defined is notoriously technical. There are
published proofs in [Ore31] itself as well as [Pas77] and [Ško04]. However, each of those
leaves out at least some of the details. Also, it is nearly impossible to verify those proofs
by hand.

The Lean theorem prover [Mou+15] is a relatively recent development that allows
for automatic verification of proofs. The accompanying math library [Com20] is an
ever-growing collection of objects and proofs that have been formalised in Lean. We
contribute to that by adding the definition of the Ore localisation and providing proofs
for the following theorems. This project is joint work with Jakob von Raumer. The code
has been published in the math library [KR22].

In our formalisation, after defining the Ore localisation in the categories of monoids,
semirings and rings, we show that the localisation is a well-defined object in the same
category.

Theorem A (Theorem 5.10, Theorem 5.20, Lemma 5.23).

1. Let R be a monoid and S ⊆ R an Ore subset. Then the multiplication on the Ore
localisation of R at S is well defined and turns it into a monoid.

2. Let R be a semiring or ring and S ⊆ R an Ore subset. Then the addition on the
Ore localisation of R at S is well defined and, together with the multiplication,
turns it into a semiring or ring, respectively.

We also show that the Ore localisation is a description of the universal localisation.

Theorem B (Theorem 5.13, Theorem 5.21). If R is a monoid or semiring, then the
Ore localisation satisfies the universal property of the universal localisation.

In the commutative case, the localisation has already been formalised in the math
library. We provide an isomorphism between the commutative localisation and the Ore
localisation for monoids.

Theorem C (Theorem 5.14). If R is a commutative monoid, then the Ore localisation
at S is isomorphic to the group of differences of R and S.

The main reason why the Ore localisation is interesting to us later on is because it is
a canonical way to turn a ring into a division ring.

Theorem D (Theorem 5.24). If R is a ring without zero divisors, then the Ore locali-
sation of R at the set of non-zero elements is a division ring.

While these results are not new, the existence of a computer-verified proof is. To the
best of my knowledge, they are also the first published proofs that are complete and
correct.

There are some immediate consequences of the above theorems.

1. Because the Ore localisation fulfils the universal localisation property, it is isomor-
phic to the universal localisation.
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2. The Ore localisation is also the universal localisation if R is a ring, as every semiring
homomorphism between rings is also a ring homomorphism.

3. If R is a commutative domain, then the Ore localisation is the field of fractions.

We will use these corollaries as well as the theorems themselves in Part IV, when we
tackle a generalised version of Kielak’s fibration theorem. This concludes the results we
implemented in Lean.

In Part III, we return our attention to Σ-invariants. As mentioned above, the Σ-
invariant provides a criterion for N ⩽ G being finitely generated only if G/N is abelian.
Our goal in this part is to generalise the Σ-invariant to the case where G/N is nilpotent.

In order to do this, the first important observation is that seeing a map Φ: G→ R as
a height function induces a partial order on G that compares two elements by comparing
their heights. We introduce the notion of full order to recognise orders that are induced
by maps. We show that together with the archimedean property, it provides a way to
translate between maps G→ R and orders on G.

Theorem E (Theorem 7.23). Let G be a finitely generated abelian group. Every full
archimedean order on G is induced by a map Φ: G → R, where R carries the standard
order.

We will also see that conversely, every Φ induces a full archimedean order on G, thus
obtaining a one-to-one correspondence between maps and orders, up to some equivalence.

This correspondence between maps and orders allows us to translate the classical
setting involving finitely generated kernels, Σ-invariants and Novikov homology based
on maps G → R into a language that is based on orders instead. This enables us to
drop the assumption from the classical setting that some groups must be abelian for the
above notions to make sense.

Instead, we will assume that the respective groups are nilpotent and proceed to show
that many of the classical results transfer to our new setting. We start by giving a
complete description of full archimedean orders on nilpotent groups.

Theorem F (Theorem 8.6, Proposition 8.7). Let G be a finitely generated nilpotent
group. For every full archimedean order ≺ on G, there exists a normal subgroup H ⩽ G
such that ≺ is induced by some order on the center Z(G/H).

The correspondence between orders on G and pairs consisting of a subgroup H and an
order on Z(G/H) is one-to-one.

Every order on G gives rise to a positive cone. By asking about connectedness of this
cone in the Cayley graph, we obtain a definition of Σ-invariant for partial orders.

For full orders, we provide a correspondence between kernels of order-inducing maps
and trivially ordered subgroups, so-called antichains. We use this link to prove that in
analogy to the classical Σ-invariant, our generalisation, the order Σ-invariant, charac-
terises finitely generated normal subgroups N ⩽ G if G/N is nilpotent.
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Theorem G (Theorem 8.11). Let G be a finitely generated group and N ⩽ G a normal
subgroup such that G/N is nilpotent. Then N is finitely generated if and only if the order
Σ-invariant of G contains every full archimedean order such that N is an antichain.

In the proof of this theorem, we use the fact that we can characterise full archimedean
orders on nilpotent groups and thus require G/N to be nilpotent. However, it is not clear
if the condition G/N nilpotent is necessary in the sense that the theorem becomes wrong
if G/N is not nilpotent. I have already released this generalisation of the Σ-invariant up
to the previous theorem; For the preprint, see [Kli23].

As we did for Σ-invariants, we introduce a generalisation to the Novikov ring that
depends on a full archimedean order instead of a map. We show that many of the
structural properties of the classical Novikov ring transfer to the order setting.

The Σ-invariant for orders may be characterised via vanishing of Novikov homology.
This shows that two crucial results from the classical setting transfer directly to orders.
Namely, finite generatedness of normal subgroups can be seen in the Σ-invariant and via
Novikov homology.

Theorem H (Theorem 9.36). Let G be a finitely generated group and N ⩽ G a normal
subgroup such that G/N is nilpotent. Then the following are equivalent.

1. N is finitely generated.

2. Every full archimedean order on G such that N is an antichain is contained in the
order Σ-invariant.

3. For every full archimedean order on G such that N is an antichain, the first
homology of G with Novikov coefficients vanishes.

We conclude the thesis by outlining a strategy to extend Kielak’s fibration theorem
to RFN groups in Part IV. Moreover, we already prove some results that are necessary
for the proof of a generalised fibration theorem. This connects all the material we have
covered in the previous parts, in particular the Ore localisation and the order Σ-invariant
and its characterisation via Novikov homology.

The class of RFN groups is an extension of RFRS groups by nilpotent groups. The
following theorem provides a plethora of examples.

Theorem I (Proposition 10.4). The class of RFN groups contains

1. every RFRS group

2. and every torsion-free nilpotent group.

It is closed under the following operations:

3. taking subgroups,

4. taking free products,
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5. taking direct products.

An important observation is that to prove a generalised fibration theorem, we can no
longer restrict ourselves to archimedean orders. Hence, we characterise all full orders on
nilpotent groups.

Theorem J (Theorem 10.24). Every full order on a nilpotent group is either archimedean
or properly lexicographic.

This provides an explicit construction of all full orders on nilpotent groups.

We show that a large chunk of the proof of Kielak’s fibration theorem translates to
the RFN setting. The following theorem depends on some notions, which are not yet
clear to me how precisely they transfer to RFN groups. Figuring out the details will be
a big part of the work required to prove a fibration theorem for RFN groups. Notably
among these notions are those of a rich set and a well representable element.

Theorem K (Theorem 10.40). Let G be an RFN group and assume that every element
of D(G) is well representable. Then there exists a finite index subgroup H ⩽G and a
rich set U of orders on H such that the Novikov homology of H vanishes for every order
in U .

Hence, we know that not only Σ-invariants, but also most other tools used in Kielak’s
proof, apply analogously in the nilpotent setting. This suggests that the fibration theo-
rem itself also holds for RFN groups.

Conjecture L (Conjecture 10.41). Let G be a finitely generated group that is virtually
RFN. Then G is virtually fibred if and only if the first `2-Betti number of G vanishes.
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1. Groups and spaces
The premise of geometric group theory is to study a group G by considering actions of
G on geometric spaces. An idea of algebraic topology is to take this approach to an
algebraic setting and study actions of G on rings or modules. We start by reviewing
how to translate between groups, spaces and modules. The main references are [Hat01],
[Pas77], [Geo08] and [Bro82].

1.1. Group rings
We start by investigating actions of groups on modules. We will see that the group ring
is the natural ring to consider in this situation. To fix our terminology: By a ring, we
always mean a ring with 1 and not necessarily commutative multiplication. Most rings
in this work are some variation of a group ring with coefficients in Z,Q,C or another
group ring.

A group always acts freely on itself by multiplication. However, there is generally no
way to simply define an additional additive structure on G to turn it into a ring. For
example, there exists no ring (R,+, ·) such that the multiplicative monoid (R r 0, ·) is
isomorphic to Z. The group ring is a canonical construction of a ring on which G acts
freely. For now, since the multiplicative structure of a ring need not be a group, we may
loosen our assumption on G and require it to be just a monoid.

Definition 1.1. Let R be a ring and G a monoid. Then the monoid ring of G with
R-coefficients is the free R-module with basis G. That is, RG is the additive group
of finite formal sums of R-multiples of elements of G. The multiplication of two basis
elements is the multiplication in G, the multiplication of coefficients is the multiplication
in R. and everything else is defined by linear extension. To be explicit,

(
∑
g∈G

rgg) (
∑
g∈G

tgg) =
∑
g∈G

(
∑
h∈G

rgh−1th)g.

We also call RG a group ring if G is a group.

Note that RG is commutative if and only if G is abelian. Later on, we will want to
consider at least nilpotent groups that are not abelian, so we cannot allow ourselves to
assume that all rings are commutative.

In the literature, if R is a field, RG is sometimes also called a group algebra to em-
phasise the fact that it is an R-vector space as well as a ring.

Example 1.2. For G = N, the monoid ring RG is the polynomial ring with coefficients
in R. Note that if we let X be the generator of N, there is an intentional overlap of
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notations for polynomials and for elements of the monoid ring RN. Similarly, if G = Z,
the group ring RZ is the ring of Laurent polynomials.

Note that a sum
r =

∑
g∈G

rgg

is an element of the monoid ring RG if and only if only finitely many rg are non-zero.
The set of those g such that rg 6= 0 is called the support of r and is denoted by supp r.
In line with Example 1.2, we call a single summand rgg a monomial.

Another way to view r is as a finitely supported map between sets

r : G→ R, g 7→ rg.

We denote the set of all those maps, even with infinite support, by RG.
The embedding G → RG is a map of monoids and hence defines an action of G on

RG. This action is free because G acts freely on a free basis of R. An RG-module is an
R-module together with a G-action.

Remark 1.3. To be more precise: A left RG-module is a left R-module with a left
G-action. For example, left multiplication by G on RG. The same works for right
multiplication and right modules. Often, we get to decide between left multiplication or
right multiplication, which will provide left or right module structures, respectively. In
these cases, we drop the designation of left or right as long as everything works equally
well on either side.

Note that any ring together with its addition is an abelian group and hence a Z-
module. Thus, if we only want to construct a ring on which G acts freely, the canonical
choice for the coefficient ring R is Z. To make this notion precise, consider the forgetful
functor Rings → Monoids that sends a ring to its multiplicative monoid. The left
adjoint of this functor is the functor that sends G to ZG.

In this spirit, the literature sometimes calls ZG-modules just G-modules because they
are just abelian groups with a G-action on them. This mimics the definition of an
R-module as an abelian group with an R-multiplication.

Remark 1.4. I sometimes make category theoretic remarks like the previous one about
adjoint functors. They are meant as an additional explanation for readers familiar with
these notions and should not discourage everyone else. They are not essential to what
follows. For those interested, a good reference is [Mac78].

1.2. Group homology
The homology of a group may be seen as a way to construct the “correct” modules
with G actions on them if one wishes to study a group by its actions. We review the
important definitions and will see how to compute the homology via classifying spaces.
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Definition 1.5. Let R be a ring. A chain complex is a sequence of R-modules Mi for
i ∈ Z and a map ∂ : ⊕i∈Z Mi → ⊕i∈ZMi such that ∂Mi+1 ⊆Mi and ∂2 = 0.
∂ is called the boundary map.

The restriction ∂|Mi
is also denoted ∂i and the whole chain complex is

. . .
∂3−→M2

∂2−→M1
∂1−→M0

∂0−→ . . . .

For a finitely long sequence like

0→M2 →M1 →M0 → 0,

all modules outside the shown range are assumed to be trivial.

Definition 1.6. Let (Mi, ∂) be a chain complex. Then its homology is

Hi(M∗) := ker ∂i/ im ∂i+1.

If Hi(M) = 0, then M∗ is exact at i. M∗ is exact if it is exact at every position.

Note that Hi(M∗) is again an R-module.
The homology of a group G is the homology of a particular chain complex that arises

from G.

Definition 1.7. Let G be a group and M a ZG-module. A resolution of M is an exact
sequence

. . .M2 →M1 →M0 →M → 0

of ZG-modules Mi. The resolution is projective or free if all Mi are projective or free,
respectively.

Remark 1.8. An R-module P is projective if there exists another R-module Q such that
P ⊕Q is a free R-module. In particular, free modules themselves are always projective.

Several other equivalent definitions of projective modules also exist. However, we will
not concern ourselves too much with these. For us, free resolutions will usually suffice.

Definition 1.9. Let G be a group and M∗ a projective resolution of Z. Note that by
taking the trivial G action on Z, it becomes a ZG-module. Let A be another ZG-module.

The homology of G with coefficients in A is

Hi(G,A) := Hi(M∗ ⊗ZG A) = ker(∂i ⊗ZG A)/ im(∂i+1 ⊗ZG A).

The first important fact about this definition is that it does not depend on the choice
of projective resolution. The second fact is that M∗ can always be chosen to be a free
resolution.
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Example 1.10. For any group G with generating set S, consider the sequence

(ZG)S ∂1−→ ZG ∂0−→ Z→ 0.

Here, (ZG)S is the free ZG-module with basis S and the basis elements are called es.
The boundary map ∂0 sends every g ∈ G to 1 ∈ Z and ∂1 sends a basis element es to
1− s ∈ ZG.
∂0 is onto, and its kernel is the set of such elements of ZG whose coefficients add up

to 0. Every such element is a Z-linear combination of elements of the form 1− g. There
exists an x ∈ (ZG)S such that ∂1x = 1− g. To construct this x, we write g as a word in
S. Take, for example, g = abc. Then

1− g = (1− a) + (a− ab) + (ab− abc) = ∂1ea + ∂1(a eb) + ∂1(ab ec).

In Definition 1.13, we will make precise how this construction works in general.
We have seen that ∂0 is onto and ker ∂0 ⊆ im ∂1. As also ∂1 ◦ ∂0 = 0, the sequence

defined above is exact at ZG and at Z.
Now consider the case where G = F2 = 〈a, b〉, the free group with generating set

S = {a, b}. Then an element xea + yeb ∈ (ZG)S is in ker ∂1 if x(1 − a) + y(1 − b) = 0.
This cannot happen, so the sequence

0→ (ZG)S ∂1−→ ZG ∂0−→ Z→ 0

is exact.
To see why there are no x, y ∈ ZG such that x(1−a)+y(1−b) = 0, one may prove this

directly by comparing the supports of the two summands and showing that they cannot
be identical. However, the non-existence of such x, y is also precisely the statement that
ZF2 does not satisfy the Ore condition which we will see in Chapter 3.

As another example, take G = Z2, again with generating set S = {a, b}. Now ∂1 is
no longer injective as for example (b − 1)(1 − a) + (1 − a)(1 − b) = 0. Indeed, this is
essentially the only case where x(1− a) + y(1− b) = 0, so the sequence

0→ ZG ∂2−→ (ZG)S ∂1−→ ZG ∂0−→ Z→ 0

where ∂2 1 = (b− 1)ea + (1− a)eb is exact.

1.3. Classifying spaces
In order to compute the homology of a group, one way to obtain a resolution of Z is by
looking at CW-complexes that come with a sufficiently nice G-action on them. In this
way, the CW-complex is a geometric realisation of the group, and the homology of the
group is the homology of the space.

Let C be a CW-complex and Ci the set of its i-cells. Let R be a ring. We may
associate to C a chain complex by taking Mi to be the free Z-module with basis Ci. The
boundary map sends an i+ 1-cell to the oriented sum of i-cells on its boundary.
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If G is a group that acts on C cellularly, that is in such a way that i-cells map to
i-cells and cells that are fixed by the action are fixed pointwise, then we call C a G-
CW-complex. In this case, the action of G also becomes an action on the chain complex
associated to C. So the chain complex is actually a sequence of ZG-modules. We call
C a classifying space for G if the homology of the associated chain complex is zero in
every degree.

If G is a group given by a presentation, we can construct the 2-skeleton of a classifying
space in a particularly nice way.

Definition 1.11. Let G be a group with a presentation G = 〈S | R〉. The presentation
complex associated to this presentation is the CW-complex that consists of one vertex,
a loop for every element of S and a 2-cell for every element of R, glued in along a path
tracing out the respective relation as a word in the generators. By construction, this
space has fundamental group G, so G acts by deck transformations on the universal
cover. There, we get a free G-orbit of cells for every cell of the presentation complex.
Hence, the chain complex associated to the universal cover is

(ZG)R → (ZG)S → ZG→ 1.

We also denote it
C2 → C1 → C0 → 1.

To define the boundary map, let {fr | r ∈ R} be the basis of C2 and {es | s ∈ S} the
basis of C1. Then

∂es := 1− s

and
∂fr =

∑
s∈S

∂

∂s
(r)es

where ∂/∂s is the Fox derivative we define below.
Note that the 1-skeleton of the universal cover of the presentation complex is the

Cayley graph Cay(G,S).

Example 1.12. In Figure 1.1, we see the universal cover of the presentation complex of
Z2 = 〈a, b | [a, b]〉. It has one Z2-orbit of vertices, two orbits of edges, with the vertical
edges corresponding to ea and the horizontal edges corresponding to eb, and one orbit
of 2-cells.

Next to it is the universal cover of the presentation complex of the free group on two
generators F2 = 〈a, b〉. Again, there are two orbits of edges, one for each generator. But
as F2 has no relations, the presentation complex is one-dimensional.

Note how these two complexes correspond to the resolutions of the same groups we
have seen in Example 1.10.

In order to explicitly compute the boundary map for a given presentation, one may
use the Fox derivative. They were developed by Fox in a series of papers starting with
[Fox53]. A modern reference is an exercise in [Bro82].
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a

a−1

b

ab

a−1b

b−1

ab−1

a−1b−1

1 bb−1

a

a−1

Figure 1.1.: The universal covers of the presentation complexes of Z2 and F2.

Definition 1.13. Let F be a free group on the generating set S and g ∈ F a word in the
generators. Let s ∈ S be a generator. Then the Fox derivative ∂/∂s is a map F → ZF
defined inductively as follows:

• ∂
∂s
(1) = 0

• ∂
∂s
(t) =


1 if t = s

−t if t = s−1

0 otherwise

• ∂
∂s
(wt) = ∂

∂s
(w) + w ∂

∂s
(t)

for any t ∈ S ∪ S−1 and w ∈ F .

Note that for any g ∈ G, if wg is a word in the generators S describing g, the sum∑
s∈S

∂

∂s
(wg)es ∈ (ZG)S

is a path from 1 to g, following edges with labels according to the letters of wg. In this
sense, the Fox derivative of a relation is the algebraic equivalent of the boundary of the
respective 2-cell.

Example 1.14. In Example 1.12, we have seen the presentation complex of Z2 with
respect to the presentation 〈a, b | a−1b−1ab〉. In Figure 1.2, we see a smaller portion of
the same complex.

If we take g = 1 presented by the word wg = bab−1a−1, the sum of fox derivatives
described above is∑

s∈S

∂

∂s
(wg)es = eb + b ea − a eb − ea = (b− 1)ea + (1− a)eb.
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b

ab

eb

a eb

b eaea

Figure 1.2.: The fox derivative of the relation bab−1a−1 = 1 ∈ Z2 seen as a path in the
Cayley graph.

Each of these summands corresponds to an edge in the presentation complex by inter-
preting negative summands as backwards edges. Concatenating those edges yields a loop
around a 2-cell.

Also, recall Example 1.10. There, we assigned ∂11 = (b − 1)ea + (1 − a)eb, which
corresponds precisely to sending the single relation to its fox derivatives.

The presentation complex may be used to compute the first homology of G. An
Eilenberg-MacLane space or K(G, 1) is the analogue for higher homology groups. It is
a CW-complex C with fundamental group G such that Hi(C,Z) = 0 for every i > 1.
Such a CW-complex is also called aspherical. There always exists a K(G, 1) such that
the 2-skeleton of its universal cover is the presentation complex. That is, a K(G, 1) may
be constructed by filling up all non-contractible spheres in the presentation complex,
starting in dimension 2 and going up. The universal cover of a K(G, 1) is what we called
a classifying space above.

Example 1.15. For G = Z/2, we may construct the universal cover of a K(G, 1) as
follows: Start with two vertices, one for each element of G. Attach an edge connecting
the two vertices. Because we want G to act freely on our space, we have to add a second
edge. Thus we obtain a 1-sphere. To make it acyclic, we have to fill the sphere up with a
2-cell and again, to satisfy our group action, we have to add a second disc. Interpreting
these as hemispheres, we see that we obtain a 2-sphere. The same will happen to any n-
sphere we wish to make acyclic in this manner. Thus we obtain the infinite dimensional
sphere S∞: an infinite-dimensional space whose n-skeleton is an n-sphere. Dividing this
by the group action, we obtain RP∞ as our K(G, 1).

1.4. Finiteness properties
The Eilenberg-MacLane spaces we constructed have a 1-cell for every generator of the
group. In particular, there exists a K(G, 1) with finitely many 1-cells if and only if G is
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finitely generated. Similarly, G is finitely presented if and only if there exists a K(G, 1)
with finite 2-skeleton.

Finitely generated groups will be of particular interest to us later on. However, much of
the theory we will see also works in higher dimensions via the following higher finiteness
properties.

Definition 1.16. A group G is of type Fn if there exists a K(G, 1) with finitely many
cells up to dimension n.
G is of type F∞ if it is of type Fn for every n ∈ N. That is, if there exists a K(G, 1)

with finitely many cells in every dimension.
G is of type F if there is a K(G, 1) with finitely many cells.

Every K(G, 1) defines a free resolution of Z as a ZG-module. We have seen how
this works up to dimension 2 in Definition 1.11. An analogous construction also works
in higher dimension: The i’th chain module Ci is the free ZG module with a basis
element for every i-cell in the K(G, 1). The boundary map ∂ sends a basis element of
Ci to its boundary seen as an element of Ci−1. The terminal module Z may be seen
as representing the one connected component of the K(G, 1). The boundary map ∂0
in degree zero sends every group element to the connected component of its associated
vertex. That is, to the generator of Z. The G-action on Z is trivial because all vertices
are in the same connected component.

A natural question is if the same thing works in reverse. That is if every projective
resolution gives rise to a K(G, 1). The answer is negative in general, and therefore, the
following definition is meaningful.

Definition 1.17. A group G is of type FPn if there exists a projective resolution Ci of
Z such that Ci is finitely generated as a ZG-module for every 1⩽ i⩽n.
G is of type FP∞ if it is of type FPn for every n ∈ N.
G is of type FP if there exists a projective resolution Ci of Z by finitely generated

ZG modules such that all but finitely many Ci are trivial.

Example 1.18. We have seen in Example 1.10 that Z2 and F2 are of type FP. In
Example 1.12, we saw that they are also of type F .

Finite groups are groups of type F∞ and FP∞. We have seen this for G = Z/2
in Example 1.15. The same example works similarly for any finite group and indeed,
there is no finite dimensional K(G, 1) if G is finite so finite groups are not type FP. A
torsion-free example of an FP∞-group that is not FP is Thompson’s group F as was
shown in [BG84].

In [BB97], we find for every n an example of a group that is of type FPn but not
FPn+1.

We have argued that a group of type Fn is also of type FPn. However, the converse
is not true: There exists a group of type FPn but not Fn for every n > 1 and we find
an example of that in [BB97]. However, if G is of type F2, then FPn implies Fn. The
same applies analogously for types FP∞ and FP.
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2. Groups
We have established that our prime example of a ring is a group ring. Now, let us see
which groups we want to study. We have already seen the free group F2 and the free-
abelian group Z2 and they will continue to be essential examples. But of course, they
are not the only groups we consider. Two important properties that most of our groups
have are that the groups are

1. finitely generated

2. and torsion-free.

Finite generation is important because if S and S′ are two finite generating sets of
a group G, the Cayley graphs Cay(G,S) and Cay(G,S′) are quasi-isometric. We will
discuss this feature in Chapter 6.

If G has torsion, that is if there exists an element 1 6= g ∈ G such that gn = 1 for
some n ∈ N+, then

(1− g)
n−1∑
i=0

gi =

n−1∑
i=0

gi −
n∑
i=1

gi = 1− gn = 0 ∈ ZG.

Hence, ZG has zero divisors. We will see how this is an issue in Section 3.1. Sometimes,
we can get around this by considering groups which are virtually torsion-free. That is,
groups that have a torsion-free subgroup of finite index.

2.1. Nilpotent groups
One class of groups that play a vital role in this work is the class of nilpotent groups.
They have been studied a lot in different contexts. A comprehensive introduction may
be found, for example, in [CMZ17]. But let us recall the facts most important to us.

Definition 2.1. Let G be a group. For g, h ∈ G, denote by [g, h] := g−1h−1gh the
commutator of g and h. The lower central series of G is defined as follows: Set G(0) = G
and

G(i+1) := [G(i), G] = 〈[g, h] | g ∈ G(i), h ∈ G〉.

G is nilpotent if all but finitely many G(i) are trivial. If G(n) is the first trivial group
in the lower central series, then n is the nilpotency class of G.
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Remark 2.2.

1. Setting [g, h] to be g−1h−1gh is just a convention, but it is the convention we use
in this work. This way we get hg[g, h] = gh.
The convention [g, h] = ghg−1h−1 would be just as valid and is sometimes found
in the literature.

2. The subgroup [G(i), G] is normal in G as for f, h ∈ G and g ∈ G(i),

f−1[g, h]f = [f−1gf, f−1hf ] ∈ [G(i), G].

While the definition of nilpotent we gave considers smaller and smaller subgroups of
G until we reach the trivial group, there is another description, which tries to fill G
by starting with the trivial group and then considering a sequence of increasingly large
subgroups:

Definition 2.3. Let G be a group. The center of G is

Z(G) := {g ∈ G | [g, h] = 1 for every h ∈ G}.

Again, this is a normal subgroup of G.
The upper central series of G is Z(0) := {1} and

Z(i+1) := πi
−1Z(G/Z(i))

where πi is the projection map G↠ G/Z(i).

Lemma 2.4. Let G be a group and Z(i) its upper central series.
G is nilpotent if and only if all but finitely many Z(i) are equal to G. The nilpotency

class of G is the minimal n such that Z(n) = G.

Remark 2.5. The trivial group is the only nilpotent group of class 0. G is nilpotent of
class n+1 if it is not nilpotent of class n but G/Z(G) is. If G/Z(G) is nilpotent of class
n, then [G,G] is of class at most n.

In particular, a non-trivial group is abelian if and only if it is nilpotent of class 1.

Let us have a look at some examples of nilpotent groups. These will be our prime
examples throughout this work and also explain an intuition behind the terms upper
and lower central series.

Example 2.6. Consider the group

H :=
〈
a, b

∣∣ 1 = [a, [a, b]] = [b, [a, b]]
〉
.

It is called the Heisenberg group. Its lower central series is

H(1) = [H,H] = 〈[a, b]〉 ⩽ H
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Figure 2.1.: A path in the Cayley graph of Z2. It goes around two squares in positive
direction and one in negative direction.

and every other term is trivial. Its upper central series also is

Z(1) = Z(H) = 〈[a, b]〉 ⩽ H

and again, every other term is trivial.
We will often use the Heisenberg group as an example because it is, in a sense, the

simplest non-abelian nilpotent group: It has 2 generators and is nilpotent of class 2.
Both are the lowest possible numbers for non-abelian groups. It is the only such group
that is torsion-free.

The Heisenberg group may also be seen as the group of upper triangular 3×3 matrices
with integer entries and 1 on the diagonal. A possible isomorphism is

a 7→

1 1 0
0 1 0
0 0 1

 , b 7→

1 0 0
0 1 1
0 0 1

 , [a, b] 7→

1 0 1
0 1 0
0 0 1

 .

This embedding also shows that any element of H may be written uniquely as aαbβ [a, b]γ
with α, β, γ ∈ Z, as this element corresponds to the matrix1 α γ

0 1 β
0 0 1

 .

The Cayley graph of H is not so easy to draw, but consider the following: As
H/[a, b] = Z2, the Cayley graph of H also projects onto the Cayley graph of Z2. Have a
look at Figure 2.1. A path in Cay(Z2) lifts to a unique path of Cay(H). If the path is
a loop, then its endpoint is [a, b]n, where n is the number of squares the path encloses.
This is because the number of squares enclosed corresponds to the number of times we
need to apply the relation [a, b] = 1 ∈ Z2 to show that the path is a loop in Cay(Z2).
To be more precise, we count how many times the path goes around each square in
clockwise direction minus the number in counter-clockwise direction. Thus, lifting the
path in Figure 2.1 to Cay(H) results in a path from 1 to [a, b]. Here, it does not matter
which point on the path is the origin.
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a b c

[a, b] [a, c] [b, c]

[a, [a, b]] [b, [a, b]]

G(0)

G(1)

G(2)

Figure 2.2.: A forest of commutators in the group H × Z where H is the Heisenberg
group. Each row contains the normal generators of a group in the lower
central series. Colours indicate generators of groups in the upper central
series.

For a path in Cay(H) from g to g[a, b]n, one may think about n as the height of
the path above its projection to Cay(Z2). More precisely, it is the relative height of the
path’s start and end points. Note that there is no clear notion of the height of a path that
is not a loop in Cay(Z2). But two paths to the same point in Z2 have a relative height,
which is the height of their concatenation, reversing one of the paths. This observation
will be crucial when we study orders on the Heisenberg group in Example 8.1.

Many features of nilpotent groups can already be seen in the Heisenberg group, so
it is often a good example. But sometimes, the Heisenberg group is not sufficient. For
example, the non-trivial terms of the upper and lower central series are the same for the
Heisenberg group. However, this does not have to be the case.

Example 2.7. Take G := H × Z where H is the Heisenberg group. That is

G =
〈
a, b, c

∣∣ 1 = [a, [a, b]] = [b, [a, b]] = [a, c] = [b, c]
〉
.

It is also nilpotent of class 2. The center is

Z(1) = Z(G) = 〈[a, b], c〉 ⩽ G

whereas the commutator subgroup is

G(1) = [G,G] = 〈[a, b]〉 ⩽ G.

A depiction of how to find these generators can be seen in Figure 2.2.

If G is nilpotent and N ⩽ G is a normal subgroup, then the terms of the lower
central series of G/N are (G/N)(i) = G(i)/(N ∩ G(i)). Hence N , is also nilpotent and
its nilpotency class is no larger than n, the class of G. Similarly, any subgroup H ⩽G
is nilpotent of class at most n. This observation allows for the following definition.

Definition 2.8. The free-nilpotent group of class n and rank k is the group

Fk/Fk
(n)

where Fk is the free group on k generators.
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We have already seen the Heisenberg group, which is the free-nilpotent group of class
2 and rank 2.

A free-nilpotent group is “barely nilpotent”. That is, it has only those relations that
are necessary to make it nilpotent of class n. Hence, a group is nilpotent of class at most
n, if and only if it is a quotient of some class n free-nilpotent group. This is analogous
to all groups being quotients of free groups and abelian groups being quotients of free-
abelian groups. In contrast to those, not every subgroup of a free-nilpotent group is
itself free-nilpotent.

2.2. Residually finite, rationally solvable groups
Another important class of groups besides nilpotent groups are residually finite, ratio-
nally solvable or RFRS groups. Their significance for us lies in the following theorem.
In fact, they were introduced by Agol in [Ago08], essentially as the class of groups for
which a similar theorem holds in a topological setting.

Theorem 2.9 ([Kie20]). Let G be a non-trivial finitely generated group that is virtually
RFRS. Then G is virtually fibred if and only if β21(G) = 0.

To explain the terminology, a group is said to have some property virtually if and only
if it admits a finite index subgroup with that property. G is said to be fibred if it admits
a map onto Z with finitely generated kernel. Such a map is also called an algebraic
fibration to distinguish it from the topological analogue. By β21(G), we denote the first
`2-Betti number of G, on which we will elaborate in Chapter 4.

For now, it suffices that if we are interested in whether a group fibres, Theorem 2.9
provides an answer if our group is RFRS. One goal in this work is to generalise the
theorem to a larger class of groups, which we call RFN groups, and we will define in
Chapter 10. It is a class of groups that canonically extends the class of RFRS groups to
also include all nilpotent groups. But first, let us have a look at RFRS groups.

Definition 2.10. Let G be a group. If there exist finite index normal subgroups Gi ⩽ G
for i ∈ N such that

1. G0 = G,

2. Gi+1 ⩽ Gi and

3. ∩i∈NGi = {1},

then we call G residually finite.
More generally, a group G is said to have some property P residually, if there exist

Gi ⩽ G not necessarily of finite index but otherwise as above, such that G/Gi has
property P for every i. The collection of the Gi is called a witnessing chain for the fact
that G is residually P .

Definition 2.11. Let G be a residually finite group. Then G is residually finite, ratio-
nally solvable or RFRS if there exists a witnessing chain (Gi) and free-abelian groups
(Ai) such that the projection Gi ↠ Gi/Gi+1 factors through Ai for every i ∈ N.
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Remark 2.12. If Gi is finitely generated, its abelianisation is the direct sum of a free
abelian group Gfab

i and some finite group. In this case, we can always ask that Ai is the
kernel of the projection Gi ↠ Gfab

i .
If Gi is not finitely generated, we set Gfab

i to be the image of G in (G/[G,G]) ⊗Z Q
and again we can ask that Ai is the kernel of the projection Gi ↠ Gfab

i . It is important
to note that in the finitely generated case, the two definitions of Gfab

i coincide.

Example 2.13. Every subgroup of a right-angled Artin group is virtually RFRS [Ago08,
Chapter 2 and Corollary 2.3]. Notably, this includes free groups, torsion-free abelian
groups and the examples of groups that are FPn but not FPn+1 from [BB97] that we
mentioned in Example 1.18.

On the other hand, non-abelian nilpotent groups are not RFRS. More precisely: A
group that is both virtually nilpotent and virtually RFRS is also virtually abelian [Kob10,
Theorem 1.6].

In Definition 10.1 we will define RFN groups, which is a class containing all RFRS
groups. As we will then re-prove any property of RFRS groups important to us for this
larger class of groups, let us defer any further discussion of RFRS until then.

2.3. Baumslag-Solitar groups
When exploring the boundary of one’s theory, it is often helpful to find examples where
the theory does not apply anymore. A class of groups that is notoriously good at being
such a counterexample are the Baumslag-Solitar groups introduced in [BS62]. We will
also use them several times in this capacity, so let us review their definition and most
important properties.

Definition 2.14. Let m,n ∈ N. Then the Baumslag-Solitar group is the two-generator
one-relator group

BS(m,n) := 〈a, b | bma = abn〉.

In Figure 2.3, we see the Cayley graph of BS(1, 2). The single relation ba = ab2 may
be seen as a pentagon in the Cayley graph. Arranging several of these pentagons, we
obtain a “sheet” as in the left picture as a subset of the Cayley graph.

Note that in the sheet, at every level, we omit the b−1-edge below every other point.
Thus, to find such a sheet in the Cayley graph, we have to choose, which half of the
edges we omit at every level. Hence, the sheets are arranged as the binary tree in the
right picture. Every edge in the tree corresponds to a choice of which half of the edges
we omit. This tree may also be thought of as the set of left (or right) b-cosets in BS(1, 2).

Similar to nilpotent groups, Baumslag-Solitar groups can be seen as a group of upper
triangular matrices via the embedding

a 7→ A :=

(
m
n 0
0 1

)
, b 7→ B :=

(
1 1
0 1

)
.
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Figure 2.3.: The Cayley graph of BS(1, 2) = 〈ab | ba = ab2〉. In the left picture, vertical
edges correspond to the generator a and horizontal edges to the generator
b. We see only those elements that may be reached from the bottom left
corner by using edges a and b in positive orientation. In the right picture,
every edge corresponds to the generator a. Colours indicate matching edges
under the projection mod b.

To verify this, we compute that BmA = ABn. So, the above map is a group homomor-
phism. If m = 1 and n 6= 1, it is also injective, as can be verified directly. However, this
also follows from the following discussion.

We claim that every g ∈ BS(1, n) has a presentation as aibka−j with i, j, k ∈ Z such
that both i and j are non-negative.

In matrix presentation, any element of BS(1, n) corresponds to a matrix

M(m,m′, k0) :=

(
n−m k0 n

−m′

0 1

)
for some m,m′, k0 ∈ Z as the set of these matrices is closed under multiplication with A
and B and it contains 1 =M(0, 0, 0).

The element aibka−j written as a matrix is

aibka−j 7→
(

1
ni 0

0 1

)(
1 k
0 1

)(
nj 0
0 1

)
=

(
nj−i k n−i

0 1

)
.

This covers every matrix M(m,m′, k0) for some non-negative i and j: Take

i = max(m,m′, 0), j = i−m, k = k0 n
i−m′

.

As this choice of i, j, k is unique if we ask j to be minimal, the mapping is injective. In
particular, every elemen of BS(1, n) has a unique presentation of the form aibka−j with
minimal j.
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3. Localisations
When studying modules over rings, we find that many things become much easier if our
base ring is a field. Crucially, every module over a field is free. That is, it is a vector
space. Therefore, the question arises if we can somehow pass from modules over a given
ring R to vector spaces. For this, the first question is if R embeds into any field and, if
so, if there is some universal choice of field into which R embeds.

The ring Z embeds into the field Q, and any field into which Z embeds is a field
extension of Q. Hence Q is the canonical choice for a “fieldification” of Z. Similarly, if
R is any commutative domain, we may construct its field of fractions by taking formal
fractions with numerator and denominator in R, and it plays a similar role as Q does
for Z.

For us, R will mostly be a group ring over some non-abelian group, hence not com-
mutative. There is no chance of R embedding into a field if R is non-commutative,
but the next best thing would be a division ring, which is the non-commutative version
of a field. In this chapter, we will see how close we can get to a field of fractions for
non-commutative rings. See also [DF03] and [Lam99]. A foundational paper discussing
which rings embed into division rings is [Coh61]. A more recent and very thorough
treatment of the topic can be found in [Lóp21].

3.1. The universal localisation
A localisation of a ring R is a canonical choice of another ring RS such that all elements
of some subset S ⊆ R are invertible in RS . Such a ring always exists, and it is called the
universal localisation of R at S. However, RS is not always as nice as one might hope.
In this section, we review the construction and why it is universal. In Chapter 5, we will
see in which cases the universal localisation is particularly well-behaved.

Definition 3.1. Let R be a ring. A left unit is an element r ∈ R such that rt = 1 for
some t ∈ R. This t is called the right inverse of r. A right unit is defined analogously.
A unit is an element that is a unit from both sides such that the inverses are equal.

The set of units in R is denoted by R×.

Definition 3.2. A division ring, also known as a skew field, is a ring such that

R× = Rr 0.

Remark 3.3. The trivial ring is not a division ring because its one element is a unit,
but R r 0 is empty. But unfortunately, we have to accept that the trivial ring is a ring
for now.
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Figure 3.1.: The universal property of the universal localisation of R at the subset S:
Every S-inverting map R→ T factors uniquely through RS .

Like fields, division rings have the property that every module over them is free. This
means that algebra over division rings behaves much like linear algebra. Many concepts
from linear algebra, such as basis, dimension, and matrix presentations of homomor-
phisms, apply analogously when studying modules over division rings. Therefore, an
important question is if R embeds into a division ring and, if so, if there is a canonical
choice of surrounding division ring.

A naïve attempt to simply add inverses to every element of R does not always yield
the expected result. But this idea can be made precise in the following way:

Definition 3.4. Let R be a ring and S ⊆ R any subset of R.

1. Let T be another ring and f : R → T a ring homomorphism. Then f is called
S-inverting, if f(S) ⊆ T×.

2. The universal localisation of R at S is a ring RS together with an S-inverting map
f : R → RS such that for any ring T , every S-inverting map g : R → T factors
uniquely through RS . That is the diagram in Figure 3.1 commutes. In this case,
f is called the localisation map.

Example 3.5. The universal localisation of Z at Zr0 is Q, with the embedding Z ↪→ Q
as localisation map. If g : Z→ T is any (Zr 0)-inverting map, then it extends uniquely
to a map h : Q→ T . This map is defined via

h(
p

q
) = g(p) g(q)−1.

An important fact is that the universal localisation always exists. However, the local-
isation map does not need to be injective. This is the case, for example, if S contains
any zero-divisors.

Definition 3.6. Let R be a ring. An element r ∈ R is called a left zero-divisor if there
exists a t ∈ Rr 0 such that rt = 0 and analogously for right zero-divisors.

A domain is a ring without left or right zero-divisors.

If r is a left unit, it cannot also be a right zero-divisor. To see this suppose that rs = 1
and tr = 0, then

0 = 0s = (tr)s = t(rs) = t.
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Similarly, r cannot be both a right unit and a left zero-divisor.
Hence if S ⊆ R contains a zero-divisor s, let us say st = 0 for some t 6= 0, then the

localisation map f : R→ RS cannot be injective since

0 = f(s)−10 = f(s)−1f(st) = f(t).

If S even contains 0, then RS is the trivial ring because it is the only ring where 0 is a
unit.

Example 3.7. If R is a commutative domain, then the universal localisation of R at
Rr 0 is the field of fractions. It may be constructed by taking all fractions over entries
in R with a non-zero denominator. Addition and multiplication are defined just as for
fractions in Q, and expansions and cancellations also work the same way. So this is a
generalisation of Example 3.5.

If R is a non-commutative domain, the field of fractions does not have to exist. The
Ore condition is a condition that is weaker than commutativity and guarantees the
existence of a skew field of fractions. We give this topic extensive treatment in Part II.
For now, consider the set

R[S]−1 := {(r, s) | r ∈ R, s ∈ S}/ ∼,

where we interpret a pair (r, s) as the right fraction rs−1 and the equivalence ∼ allows
expansions and cancellations of fractions. In general, it is not clear that this set has any
meaningful additive or multiplicative structure. The Ore condition is precisely such that
R[S]−1 can be turned into a ring. Again, we will see the exact definition and proof in
Part II.

We also call R[S]−1 the Ore localisation of R at S. If it exists, the Ore localisation is
isomorphic to the universal localisation RS . The map

R ↪→ R[S]−1, r 7→ r1−1

is an S-inverting embedding of R into the Ore localisation. If S = R r 0, then R[S]−1

is a division ring.

3.2. Division closures
As we have seen, the universal localisation may be pretty wild, but at least it always
exists. On the other hand, the Ore localisation has a nice description but does not
always exist. Whenever R embeds into a larger ring U , there is another approach to
adding inverses to R. Namely, if we try only localising elements of R that are invertible
in U , we may add their inverses to R. Hopefully, the result will again be a ring. If not,
we can turn it into a ring by taking the closure under addition and multiplication. Let
us make this idea precise.
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R D(R ↪→ U)

T

f
g, ∃⩽ 1

Figure 3.2.: A map R→ D(R ↪→ U) is an epimorphism if for every map R→ T to some
ring T there is at most one way of extending this map to D(R ↪→ U)→ T .

Definition 3.8. Let U be a ring and R⩽U a subring. We call a ring T ⩽U division
closed in U if for every t ∈ T that is a unit in U , t is already a unit in T . That is if

T ∩ U× ⊆ T×.

The division closure of R inside U is the intersection of all division closed rings T with
R⩽T ⩽U and denoted by D(R ↪→ U).

Note that the division closure always exists because at least U itself is division closed
in U , and the intersection of even infinitely many division closed subrings T ⩽U is again
a division closed subring.

As alluded to above, the division closure may be constructed explicitly by taking all
elements of U that are any combination of sums, products and inverses of elements of
R.

To be explicit, we add to R all inverses of elements in S := R ∩ U×. Let R′ be
the subring of U generated by R ∪ S−1. Applying the same construction to R′ yields
another ring R′′⩽U . Repeating this process countably infinitely many times or until
R(i) ∩ U× ⊆ R(i)× results in the division closure D(R ↪→ U). The details of this
construction may be found in [JL20].

Example 3.9. The division closure of Z inside R is D(Z ↪→ R) = Q. In fact, the division
closure of Z in any field of characteristic 0 is isomorphic to Q.

More generally, if R satisfies the Ore condition with respect to S, and U is a ring
containing R such that the embedding R ↪→ U is S-inverting, then D(R ↪→ U) = R[S]−1.
In particular, this is the case if S = R r 0 and U is a division ring. The reason for this
is that by the universal property of the localisation, R[S]−1 is contained in U . The
embedding R ↪→ R[S]−1 is S-inverting and adding the inverses to R and closing under
multiplication gives the set of fractions rs−1 which is precisely R[S]−1. The localisation
R[S]−1 is a ring, and every element of S is invertible in R[S]−1, so R[S]−1 = D(R ↪→ U).

Let us give another characterisation of the division closure.

Lemma 3.10. The embedding
R ↪→ D(R ↪→ U)

is an epimorphism of rings.
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Recall that a map R ↪→ D(R ↪→ U) is an epimorphism if and only if every map
f : R → T to some ring T that factors through D(R ↪→ U) does so uniquely. See also
Figure 3.2.

Proof. To see that R ↪→ D(R ↪→ U) is epic, note that to extend the map f to a map
g : D(R ↪→ U) → T such that g|R= f , there is only one choice of where to send the
inverse of an element s ∈ R ∩ U×, namely

g(s−1) = g(s)−1 = f(s)−1.

Similarly, once we know where g sends two elements x and y, there is only one choice
of where to send xy and x + y. Following our construction of D(R ↪→ U) above, this
defines g uniquely on all of D(R ↪→ U), and so R ↪→ D(R ↪→ U) is an epimorphism.

Even more, a map f : R→ T between rings is an epimorphism precisely if

D(f(R) ↪→ T ) = T.

The proof is analogous to the proof from Galois theory of the same fact if T is a field.

3.3. The Mal’cev-Neumann division ring
As we have seen, the division closure of a ring has a nice explicit description of its
elements by taking sums, products and inverses of existing elements. If the surrounding
ring is a division ring, so is any division closure inside of it. This is because every element
of D(R ↪→ U) that is invertible in U is already invertible in the division closure. So, to
find a nice division ring into which R embeds, the first question is if it embeds into any
division ring whatsoever.

Let us consider the case where R is a group ring R = kG for some field k. The first
candidate for a division ring into which kG embeds is its Ore localisation. It is a fact
due to Tamari [Tam54] and Kielak [BK16] that the Ore localisation of kG exists if and
only if G is amenable and kG admits no zero-divisors.

Even if G is not amenable, we can construct some other division ring containing kG
if G is bi-orderable. We treat orders on groups extensively in Chapter 7. For now, it
suffices to know that a group is bi-orderable if there exists a total order relation ≺ on G
such that

g ≺ g′ ⇐⇒ hg ≺ hg′ ⇐⇒ gh ≺ g′h

for every g, g′ and h ∈ G.

Definition 3.11. Let (G,≺) be a totally ordered group and R a ring. The Mal’cev-
Neumann ring is

MN≺(RG) := {f ∈ RG | supp f is well ordered},

with addition and multiplication extended from the ones in RG. By well ordered, we
mean that every subset of supp f has a unique minimum.
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The group ring RG is contained in MN≺(RG) because every finite totally ordered set
has a minimum.

It may be proven directly that for a field k, the Mal’cev-Neumann ring MN≺(kG) is a
division ring but in Section 9.1 we will see a particularly nice description of MN≺(kG)
so we defer the proof until then.

Note that just as in the group ring, we can write maps in RG and hence also elements
of MN≺(RG) or of RG as formal sums

f : G→ R↔
∑
g∈G

f(g)g.

This is just a notation, but it fits nicely with the addition and multiplication one would
expect from the notation as a sum. We will discuss this in detail in Section 9.1.

Example 3.12.

1. Let G = Z2 = 〈a, b〉ab be the free abelian group on two generators a and b. Take
≺ to be the lexicographic order on G. That is,

aibj ≺ akbl ⇐⇒ i⩽ k and i = k ⇒ j < l.

Then MN≺(QG) is the set of formal sums p ∈ QG such that:
a) There exists a minimal i such that aibj ∈ supp p for some j.
b) For each i such that aibj ∈ supp p for some j, the set of these j has a mini-

mum..
We will see that this is a bi-invariant total order on G in Definition 7.14.
The support of any element of MN≺(QG) is well ordered and hence has a unique
minimum in the sense of the order. Every monomial in MN≺(QG) is invertible
even in QG. By multiplying with the inverse of the minimum-degree monomial, we
see that every element of MN≺(QG) is up to multiplication by a unit equal to 1+x
for some x ∈ MN≺(QG) such that g ∈ suppx ⇒ 1 ≺ g. A simple computation
shows that

(1 + x)
∞∑
i=0

(−x)i = 1 ∈MN≺(QG)

and that the infinite sum is an element of MN≺(QG). We will provide the details
in Lemma 9.20.

2. Now let G = F2 = 〈a, b〉 be the free group in the two generators a and b. Let us
pick some order on the generators, say

a−1 ≺ b−1 ≺ 1 ≺ b ≺ a.

The lexicographic order in this case is the order that compares two reduced words
w1, w2 ∈ F2 by comparing the first letter where they differ. Here by reduced we

32



mean that w1, w2 do not contain any sub words of the form c−1c. Unfortunately,
this total order on F2 is not bi-invariant as for example

1 � b−1a, whereas b ≺ a = b b−1a,

so ≺ is not invariant under left multiplication by b.
However, a bi-invariant total order on F2 may be constructed as follows. This
construction was introduced in [Mag35] and is hence called the Magnus embedding.
A discussion in English may be found in [CMZ17].
Consider the ring of power series in two non-commuting variables

Z〈〈a, b〉〉 := Z[a,b].

The polynomials 1 + a and 1 + b are invertible in Z〈〈a, b〉〉 but have no common
right multiple. Hence, the map

F2 → Z〈〈a, b〉〉, a 7→ 1 + a, b 7→ 1 + b

defines an embedding of F2 into the group of units in the power series. On
Z〈〈a, b〉〉r 0, we define a bi-invariant total order by comparing monomials by their
degree. If two monomials have the same degree, we order those lexicographically.
Then, we compare two sums by comparing the coefficient of the first monomial
where these are not equal.
Note that as opposed to ZF2, in Z〈〈a, b〉〉, we are only dealing with a free monoid,
not a free group, so there is no direct contradiction to the lexicographical order
not being a bi-invariant total order on F2.
Restricting the order on Z〈〈a, b〉〉r 0 to the subgroup F2 via the above embedding
yields a bi-invariant total order on F2. So the group ring ZF2 embeds into the
division ring MN≺(QF2).

3.4. Rings that do not satisfy the Ore condition
If R satisfies the Ore condition, then the Ore localisation is not only universal in the
sense of the universal property but also in that it appears as the division closure of R in
any sufficiently large ring. In particular, if R satisfies the Ore condition with respect to
S = Rr 0, then every ring containing R where S is invertible is a free module over the
division ring R[S]−1.

Let us investigate in which ways R can fail to satisfy the Ore condition - for the
remainder of this section, we always mean with respect to S = Rr 0.

If R admits any non-zero zero-divisor r, it cannot embed into any division ring D.
Suppose that ι : R ↪→ D was such an embedding. Then ι(r) is a zero-divisor in D. But
the only zero-divisor in a division ring is 0, so ι(r) = 0. As ι is supposed to be an
embedding, this contradicts r 6= 0.

The following is an example of a ring without zero-divisors that does not embed into
any division ring.
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Example 3.13 (Mal’cev, [Mal37]). Let M be the monoid

M := [a, b, c, d, u, v, x, y | ax = by, cx = dy, au = bv].

M does not embed into any group because in a group, we have

cu = cx x−1a−1 au = dy y−1b−1 bv = dv

but this relation does not hold in M . Any embedding of ZM into a division ring D would
restrict to an embedding of M into the group of units in D. Hence, such an embedding
cannot exist.

To see that ZM does not admit any zero-divisors, first note that monomials are not
zero-divisors because the product of two monomials is again a monomial and the single
coefficient is non-zero because Z is zero-divisor-free. Hence, if

(
∑
m∈M

amm)(
∑
n∈M

bnn) = 0,

if am, bn 6= 0 for some m,n, then there must be m′ 6= m and n′ such that am′ , bn′ 6= 0
and mn = m′n′. Note that every element of M has a unique word length. Restricting
the above sums to words of minimal length in their supports gives another zero-divisor
pair, so we may assume that all m have the same length and all n have the same length.

Now if mn = m′n′, then there must be relations in M transforming mn to m′n′. Note
that any relation changes letters only within the sets

{a, b}, {c, d}, {x, y}, {u, v}

and a, b, c, d appear only as the first letter and x, y, u, v appear only as the second letter.
As m 6= m′, there must, in fact, be a single relation transforming mn to m′n′ and this
relation must involve the last letter of m and the first letter of n.

For brevity, let us assume that m,m′, n, n′ all have length 1. Then mn = m′n′ is
precisely one of the three relations defining M . Whichever relation it is, mn′ is a word
not involved in any of the relations. Hence for mn′, there are no m′′, n′′ such that
mn′ = m′′n′′ and therefore

mn′ ∈ supp
(
(
∑
m∈M

amm)(
∑
n∈M

bnn)
)
,

contradicting the assumption that the product is 0.

This concludes the example of a domain that does not embed into any division ring.
The other problem that may arise is that there are two non-isomorphic division rings
into which R embeds epically. Both would have to be the Ore localisation, which is
impossible because the universal localisation is unique. The following is an adapted
version of an example that may be found in [Lam99].
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Example 3.14. Let F = [x, y] be the free monoid on two generators. Then the monoid
ring QF embeds epically into two non-isomorphic division rings.

To construct those division rings, let BS(1, n) be the Baumslag-Solitar group. That is

BS(1, n) = 〈a, b | ba = abn〉.

Recall from Section 2.3 that every element of BS(1, n) has a unique normal form. We
order the normal forms by setting aibka−j ≺ ai′bk′a−j′ if and only if one of the following
conditions is met.

1. i− j < i′ − j′,

2. i− j = i′ − j′ and i < i′,

3. i = i′, j = j′ and k < k′.

Otherwise we set aibka−j ≽ ai
′
bk

′
a−j

′ . This defines a total order on BS(1, n), and a
straightforward computation shows that it is bi-invariant. Therefore, QBS(1, n) embeds
into the respective Mal’cev-Neumann division ring, which we denote by Mn.

If n > 1,
ι : F → BS(1, n), x 7→ a, y 7→ ab

is a map of the free monoid into the Baumslag-Solitar group. To see that it is also an
embedding, note that a word w in the letters {a,b} of length l maps to albf(w) where
f(w) is the following recursive map:

a 7→ 0

b 7→ 1

ws 7→ n · f(w) + f(s)

Checking that this is true is, again, a straightforward computation.
Put differently, f(w) is the natural number we get by seeing w as an l-digit n-ary

number interpreting a as the digit 0 and b as the digit 1. Since every number has at
most one n-ary presentation of length l, this shows that ι is injective. The embedding ι
extends to an embedding ιn : QF ↪→ QBS(1, n) of monoid rings and as the group ring
QBS(1, n) is contained in the Mal’cev-Neumann division ring, we even get an embedding
QF ↪→Mn. As Mn is a division ring, so is the division closure of QF in Mn. We claim
that for n 6= m, the division closures D(QF ↪→ Mn) and D(QF ↪→ Mm) are not
isomorphic in a way that respects the embedding of QF . So let

ϕ : D(QF ↪→Mn)→ D(QF ↪→Mm)

be any ring homomorphism such that ϕ ◦ ιn = ιm. That is to say, the diagram in
Figure 3.3 commutes. Then(

ιm(y)ιm(x)
−1)m = (ab a−1)m = abma−1 = b = ιm(x)

−1ιm(y) ∈ D(QF ↪→Mm).
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QF D(R ↪→Mn)

D(R ↪→Mm)

ιn

ιm
ϕ

Figure 3.3.: No map between the two division closures can be an isomorphism respecting
the embedding of QF .

But this means

ϕ(ιn(y)ιn(x)
−1)m = ϕ(ιn(x)

−1ιn(y)) = ϕ(ιn(y)
−1ιn(x))

n

where the second equality is similar to the computation above but in D(QF ↪→ Mn).
Hence

abm−na−1 − 1 = ϕ(ιn(y)ιn(x)
−1)m−n − 1 = 0.

As abm−na−1 − 1 6= 0 ∈ D(QF ↪→ Mn) this means that ϕ is not injective and certainly
not an isomorphism.

36



4. ℓ2-invariants
In Theorem 2.9, we have encountered `2-Betti numbers as a criterion if a group G
fibres. We give a short overview of their definition and most important properties. Most
essential for us will be the definition of the Linnell ring D(G). After we have defined
that, we will no longer need most of the details of `2-Betti numbers, so we focus only
on the essentials here. A good introduction to the topic may be found in [Kam19], and
[Lüc02] is a comprehensive reference.

4.1. ℓ2-Betti numbers
Recall from Chapter 1 that RG is the set of maps from G to R and RG is the ring of
finitely supported maps in RG. Consider the case R = Q or R = C. The case R = C
is the “classical” setting, whereas we will later on be more interested in R = Q. To
make sure we remember that we are in a special case, let us take R = C. Nevertheles,
everything works the same way for Q.

Unlike a generic ring, C is not discrete but has a non-trivial metric. Hence, we can
make the following definition.

Definition 4.1. Let G be a group. Then `2(G) is defined as

`2(G) := {f ∈ CG |
∑
g∈G
|f(g)|2 <∞}.

`2(G) is the completion of CG with respect to the L2-norm on CG. Note that the
multiplication on CG extends naturally to a multiplication of CG on CG. With respect
to this multiplication, the subset `2(G) ⊆ CG is a CG-module. We will elaborate on the
details in Section 9.1. Generally, `2(G) is not a ring.

Definition 4.2. A map or operator f : `2(G)→ `2(G) is called bounded, if

sup
x ̸=0

‖f(x)‖
‖x‖

<∞.

Here, ‖x‖ is the L2-norm on C.

Recall that `2(G) is a CG-module, and therefore every element of CG can be seen as
an operator on `2 by identifying x ∈ CG with the left or right multiplication by x on
`2G. Thus the set of bounded operators on `2(G) also forms a CG-module
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Definition 4.3. An operator f : `2(G)→ `2(G) is G-equivariant if (gf)(x) = f(gx) for
every x ∈ `2(G) and g ∈ G.

We denote the G-equivariant bounded operators on `2(G) by L(G). This is also called
the von Neumann algebra.

L(G) forms a ring with pointwise addition and composition of functions. L(G) is also
a CG-module and in particular a ZG-module, so homology of G with coefficients in L(G)
is well-defined and H∗(G,L(G)) is an L(G)-module in every dimension.

Definition 4.4. Let G be a group, f ∈ L(G) and M an L(G)-module. Then the von
Neumann trace of f is

trvN(f) := 〈1, f(1)〉.

The von Neumann dimension of M is

dimvNM := trvN(idM )

if M is a projective module. This extends uniquely to a dimension function on all
L(G)-modules.

The n’th `2-Betti number of G is

β2n(G) := dimvNHn(G,L(G)).

This is analogous to ordinary Betti numbers being the dimension of the n’th homology
group with Z-coefficients. It is a fact that trvN() is actually a trace and dimvN is a
dimension function.

4.2. The Atiyah conjecture
In contrast to ordinary Betti numbers, `2-Betti numbers may take non-integer values.
A question due to Atiyah is which numbers arise as `2-Betti numbers of a given group
G. Any finite group G has β20(G) = 1/|G|. However, it was open for a long time if all
`2-Betti numbers are rational. While the answer is now known to be negative, as of this
writing, all known examples of irrational `2-Betti numbers come from torsion groups.
The following question is still open.

Conjecture 4.5 (Atiyah conjecture). Let G be a torsion-free group and n ∈ N. Then
β2n(G) ∈ Z.

While the Atiyah conjecture originates from the analytic setting outlined above, there
is a purely algebraic formulation of the same statement. It may be stated as asking if a
certain ring D(G) is a division ring.

Definition 4.6. Let U(G) be the set of potentially unbounded G-equivariant operators
on `2(G). Then the Linnell ring is

D(G) := D(CG ↪→ U(G)).
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An alternative formulation of the Atiyah conjecture is the following one.

Conjecture 4.7 (Atiyah conjecture). Let G be a torsion-free group. Then D(G) is a
division ring.

It is a theorem ([Lin93]) that the two formulations of the Atiyah conjecture are equiv-
alent. If G is a group that satisfies the Atiyah conjecture, then the von Neumann di-
mension and normal D(G)-vector space dimension align, so we may express the `2-Betti
numbers as

β2n(G) = dimD(G)Hn(G,D(G))

using the normal vector space dimension over D(G). Recall that modules over division
rings are always free and behave mostly like vector spaces over commutative fields. Hence
we also call these modules vector spaces.

An important fact here is that U(G) is also the Ore localisation of L(G) at the set
of non-zero divisor elements of L(G). Hence, if CG has no zero divisors and satisfies
the Ore condition, then D(G) = CG[CGr 0]−1 is a division ring, meaning that G also
satisfies the Atiyah conjecture. On the other hand, there exist groups that satisfy the
Atiyah conjecture that do not satisfy the Ore condition. The groups we encounter in
this work will usually satisfy the Atiyah conjecture, but we will point this out again
when it becomes relevant.

Another long-standing conjecture that has to be mentioned in this context is the zero
divisor conjecture.

Conjecture 4.8 (Kaplansky’s zero divisor conjecure). Let G be a torsion-free group.
Then ZG does not admit any zero divisors.

Note that if G satisfies the Atiyah conjecture, then ZG ↪→ CG ↪→ D(G) is an embed-
ding of ZG into a division ring, so G also satisfies the zero divisor conjecture.

In Section 3.2, we have seen that if a ring R embeds into a division ring U , then the
division closure D(R ↪→ U) is also a division ring. It stands to reason that it would be
enough in this situation that instead of asking U to be a division ring, that every element
of U is either a unit or a division ring, and the embedding R ↪→ U is (Rr 0)-inverting.
But note that U(G) is such a ring U . So this would mean that D(G) = D(ZG ↪→ U(G)) is
a division ring, and hence the zero divisor conjecture would imply the Atiyah conjecture.
It is not known if this implication is true.
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Part II.

The Ore localisation

40



5. A formalisation in Lean
We have seen in Chapter 3 that for any ring R and subset S ⊆ R, there exists a universal
localisation RS that comes equipped with a map R→ RS that is S-inverting. We have
also seen that for a commutative domain, the role of universal localisation is taken by
the field of fractions, which has a much nicer description than the generic universal
localisation and also has many nice properties, foremost among them that it is a field.

In this chapter, we explore the middle ground. Vaguely, we want to answer the
question: For which non-commutative rings is the universal localisation close enough
to the field of fractions? Ore has answered this question in [Ore31]. We provide a
computer-verified proof that his construction is verified, using the Lean theorem prover.
While the Lean code stands for itself, this part is thought to be a guide through the
code. Besides showing how the proofs work, it also translates between Lean and natural
language, meaning that the statements Lean accepts to be true correspond with the ones
we formulate here.

In this part, instead of proofs, we provide the respective statements in Lean, for which
we have also written proofs in Lean. Sometimes, we leave out some parts of the Lean
statements if these parts are technicalities that do not help understanding. As a general
remark, note that sometimes a statement that is a lemma in natural language need not
translate to a theorem but may also be an instance or def in Lean. This is because
every definition in Lean has to come with a proof of well-definedness. In these cases, we
usually leave out the proof and only state the definition here.

The complete code with all proofs may be found in Appendix B and in the Lean
community math library at [KR22]. This chapter, and especially the proofs we provide,
largely follow [Ško04]. Writing the code was a joint work with Jakob von Raumer. We
originally wrote the code in Lean 3. The version presented here is the Lean 4 code that
our code was ported to by the math library.

5.1. Ore sets
We start by defining the Ore condition, which we use throughout this part. We are
going to show that if S ⊆ R satisfies this condition, then we can describe the universal
localisation RS as the set of fractions with numerator in R and denominator in S together
with appropriate addition and multiplication.

Definition 5.1. Let R be a monoid and S ⊆ R a submonoid. Then S is called an Ore
set if the following conditions hold:

1. For every r1, r2 ∈ R and s ∈ S such that sr1 = sr2 there exists an s′ ∈ S such that
r1s

′ = r2s
′. (left weak cancellation)
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2. For every r ∈ R, s ∈ S there exist r′ ∈ R, s′ ∈ S such that rs′ = sr′. (common
right multiple)

In this case, we also say that R satisfies the Ore condition with respect to S.

class OreSet {R : Type*} [Monoid R] (S : Submonoid R)
ore_left_cancel :

∀ (r₁ r₂ : R) (s : S), ↑s * r₁ = s * r₂ → ∃ s' : S, r₁ * s' = r₂ * s'
oreNum : R → S → R
oreDenom : R → S → S
ore_eq : ∀ (r : R) (s : S), r * oreDenom r s = s * oreNum r s

We have only defined the Ore condition if R is a monoid. If R is a ring, we can interpret
it as a monoid by considering the set R together with the multiplication. If this monoid
satisfies the Ore condition, then we also say that the ring R satisfies the Ore condition.
In both cases, S is just a submonoid and not necessarily a subring.

Also, we ask that S is a submonoid, whereas before in Chapter 3, we only asked that
S is a subset. This is just for our convenience. One may state the Ore condition for any
subset S. But then S is an Ore set in R if and only if the submonoid of R generated by
S is an Ore set.

Note that in the code, we phrased the common right multiple condition not as an
existence of (r′, s′), but we ask that such elements should actually be provided for any
given pair (r, s). We call those oreNum r s and oreDenom r s .

If for some R and S that satisfy the common right multiple condition, the maps
oreNum and oreDenom cannot be explicitly constructed, the two definitions are not
equivalent. However, if we wrap our Lean code in a noncomputable environment, they
are equivalent. This environment may be thought of as the Lean equivalent of the axiom
of choice and states that if we know something exists, then such an object can actually
be provided. We defer the finer points of this discussion to Appendix A.

In any case, we must ensure that whatever we define later on does not depend on the
concrete choice of (r′, s′).

The Ore condition is void if R is commutative. We will see later that, in this case,
the universal localisation coincides with well-known constructions from commutative
algebra, depending on the structure on R. Namely with the group of differences or the
(semi-) field of fractions.

Lemma 5.2. If R is a commutative monoid, then any submonoid of R is an Ore set.

instance oreSetComm {R} [CommMonoid R] (S : Submonoid R) : OreSet S

To justify the name left weak cancellation property, we show that it is satisfied if R
is left cancellative. That is, if for any a, b, c ∈ R such that ab = ac, we also have b = c.
This allows us to ignore the left weak cancellation condition as long as we work with left
cancellative monoids.

Lemma 5.3. Let R be a monoid satisfying the cancellation property. Then any sub-
monoid of R satisfies the left weak cancellation property.
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RingsS SemiringsS MonoidsS

Rings Semirings Monoids

Figure 5.1.: A commutative diagram of functors. Objects in the upper row are pairs
(R,S), where S is an Ore set in R. The horizontal lines are forgetful functors,
and the vertical lines are the Ore localisations of R at S.

def oreSetOfCancelMonoidWithZero {R : Type*} [CancelMonoidWithZero R]
{S : Submonoid R}

(oreNum : R → S → R)
(oreDenom : R → S → S)
(ore_eq : ∀ (r : R) (s : S), r * oreDenom r s = s * oreNum r s) : OreSet S

In Part I, we have discussed zero-divisors in group rings. We have seen that con-
jecturally, group rings for torsion-free groups admit no zero-divisors. The conjecture
is known to be true for many groups. Hence, it is important to know that having no
zero-divisors is stronger than being left weak cancellative.

Lemma 5.4. Let R be a ring without zero-divisors. Then any submonoid of R satisfies
the left weak cancellation property.

def oreSetOfNoZeroDivisors {R : Type*} [Ring R] [NoZeroDivisors R]
{S : Submonoid R}

(oreNum : R → S → R) (oreDenom : R → S → S)
(ore_eq : ∀ (r : R) (s : S), r * oreDenom r s = s * oreNum r s) : OreSet S

5.2. Monoids
Throughout this section, let R be a monoid and S ⊆ R an Ore set.

We proceed to construct the universal localisation at an Ore subset explicitly. We
will see later that the underlying set of RS is always the same, regardless of whether
R is a monoid, a semiring or a ring. Similarly, the multiplicative structure will be the
same in each case, and the additive structure will be equal for semirings and rings. This
allows us to start with the localisation as monoids and then build on that to proceed to
semirings and rings.

To make this precise: The diagram of functors in Figure 5.1 commutes. Note that
we do not prove functioriality of the Ore localisation. But in fact, even the universal
localisation is functorial, which is a direct consequence of its universal property.

Let us start by constructing the Ore localisation for a monoid R. First, we define the
underlying set of the localisation. We denote it by R[S]−1 to highlight that we have yet
to see that it coincides with RS . Even after this chapter, we will continue to use R[S]−1

to signal that we make use of the explicit description of the Ore localisation.
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Definition 5.5. The Ore localisation R[S]−1 of R at S is the set

{(r, s) | r ∈ R, s ∈ S}/ ∼

where two pairs (r, s) and (r′, s′) are equivalent if there exist u ∈ S, v ∈ R such that

(rv, sv) = (r′u, s′u).

variable (R : Type*) [Monoid R] (S : Submonoid R) [OreSet S]
def oreEqv : Setoid (R × S) where

r rs rs' := ∃ (u : S) (v : R),
rs'.1 * u = rs.1 * v ∧ (rs'.2 : R) * u = rs.2 * v

def OreLocalization := Quotient (OreLocalization.oreEqv R S)

Note that this also shows that ∼ is indeed an equivalence.
One should think of an equivalence class [(r, s)] ∈ R[S]−1 as a fraction rs−1 and of the

equivalence as right expansions and cancellations of that fraction. In fact, we already
denote elements of R[S⁻¹] as r /₀ s in the code. We will see soon why this notion is
justified and only then adopt that notation in this text as well. This ensures that one
does not make assumptions stemming from the interpretation as fractions. For example,
one would assume that r1−1 · 1s−1 = rs−1. While this is indeed true in the sense that
(r, 1) · (1, s) = (r, s) ∈ R[S]−1, we have not seen the proof yet. In fact, we have not even
defined the multiplication on R[S]−1 at all, so let us do that next.

Definition 5.6. Let (r1, s1), (r2, s2) ∈ R[S]−1. Let u ∈ R, v ∈ S be such that r2v = s1u,
which must exist because S is an Ore set.

Then set
(r1, s1) · (r2, s2) := (r1v, s2u).

def mul' (r₁ : R) (s₁ : S) (r₂ : R) (s₂ : S) : R[S⁻¹] :=
r₁ * oreNum r₂ s₁ /₀ (s₂ * oreDenom r₂ s₁)

Recall that oreNum r₂ s₁ and oreDenom r₂ s₁ play the roles of u and v here and that
they satisfy the condition r2v = s1u by assumption.

For now, the code only defines a map (R × S)2 → R[S]−1, but Definition 5.6 wants
to define a multiplication on R[S]−1. Hence, we have yet to see that Definition 5.6 is
well defined. This involves two things. First, it does not depend on the choice of u, v.
And second, we may change the representative within the equivalence class of (r1, s1) or
(r2, s2) without changing the product.

Lemma 5.7. Definition 5.6 does not depend on the choice of u, v.

theorem mul'_char (r₁ r₂ : R) (s₁ s₂ : S) (u : S) (v : R)
(huv : r₂ * (u : R) = s₁ * v) :

OreLocalization.mul' r₁ s₁ r₂ s₂ = r₁ * v /₀ (s₂ * u)

Lemma 5.8. Let r1, r2 ∈ R, s1, s2 ∈ S and t1, t2 ∈ R such that s1t1, s2t2 ∈ S. Then

(r1, s1) · (r2, s2) = (r1t1, s1t1) · (r2t2, s2t2)
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def mul : R[S⁻¹] → R[S⁻¹] → R[S⁻¹] :=
lift₂Expand mul' fun r₂ p s₂ hp r₁ r s₁ hr

Note that this Lemma does not quite show that the multiplication is independent of
the choice of representative, as not every two representatives of the same equivalence
class differ by an expansion. By definition, we might need to perform expansions on both
representatives to obtain equality. Hence, it might, a priori, be necessary to do a chain
of expansions and cancellations to transform one representative into another. However,
the following shows that Lemma 5.8 is indeed sufficient.

Lemma 5.9. Let f : R × S → C be some map on R × S to some set C. In particular,
if C = {true, false}, f is a statement about elements of R× S.

Suppose that f(r, s) = f(rt, st) for every r, t ∈ R, s ∈ S such that st ∈ S. Then

f∗ : R[S]−1 → C, (r, s) 7→ f(r, s)

is a well-defined map.

def liftExpand {C : Sort*} (P : R → S → C)
( hP : ∀ (r t : R) (s : S) (ht : (s : R) * t ∈ S),
P r s = P (r * t) ⟨s * t, ht⟩) : R[S⁻¹] → C :=

Quotient.lift (fun p : R × S => P p.1 p.2)
fun (r₁, s₁) (r₂, s₂) ⟨u, v, hr₂, hs₂⟩

The function lift₂Expand that we used in the proof of Lemma 5.8 is a version of
liftExpand for functions on (R× S)2 rather than on R× S.

Thus the multiplication on R[S]−1 is well defined. Now, we show that it gives R[S]−1

again the structure of a monoid by checking all the monoid axioms.

Theorem 5.10. The localisation R[S]−1 together with the multiplication defined above
is a monoid.

The neutral element may be represented as any element (s, s).

theorem one_def : (1 : R[S⁻¹]) = 1 /₀ 1
theorem one_mul (x : R[S⁻¹]) : 1 * x = x
theorem mul_one (x : R[S⁻¹]) : x * 1 = x
theorem mul_assoc (x y z : R[S⁻¹]) : x * y * z = x * (y * z)

We want to show why the interpretation

(r, s) = rs−1

is justified in R[S]−1. The following statements all look obvious once we replace (r, s)
by rs−1. We mainly need them as a step in the next proof, but they also serve as
reassurance of interpreting (r, s) as a fraction.

Lemma 5.11. Let s, s′, t ∈ S and r, r′, p ∈ R. Then

1. (s, s′) · (s′, s) = 1,
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T

f

g ∃!

Figure 5.2.: The universal property of the universal localisation of R at the subset S:
Every S-inverting map R→ T factors uniquely through RS .

2. (r, s)(1, t) = (r, ts),

3. (r, s)(s, t) = (r, t),

4. (r, s) · (sr′, t) = (rr′, t),

5. (r, 1)(p, s) = (rp, s),

6. (s, 1)−1 = (1, s). In particular, (s, 1) is a unit in R[S]−1.

theorem mul_inv (s s' : S) : ((s : R) /₀ s') * ((s' : R) /₀ s) = 1
theorem mul_one_div {r : R} {s t : S} : (r /₀ s) * (1 /₀ t) = r /₀ (t * s)
theorem mul_cancel {r : R} {s t : S} : (r /₀ s) * ((s : R) /₀ t) = r /₀ t
theorem mul_cancel' {r₁ r₂ : R} {s t : S} :

(r₁ /₀ s) * ((s * r₂) /₀ t) = (r₁ * r₂) /₀ t
theorem div_one_mul {p r : R} {s : S} : (r /₀ 1) * (p /₀ s) = (r * p) /₀ s
def numeratorUnit (s : S) : Units R[S⁻¹] where

val := (s : R) /₀ 1
inv := (1 : R) /₀ s

When we write (r, 1) ∈ R[S]−1 as a fraction, it becomes r1−1 = r. This suggests that
we may think of R as being contained in R[S]−1 via the map r 7→ (r, 1). Indeed, recall
that the universal localisation comes with a map R→ RS , and the map we just defined
is precisely the localisation map.

Lemma 5.12. The localisation map

R→ R[S]−1, r 7→ (r, 1)

is an S-inverting homomorphism of monoids.

def numeratorHom : R →* R[S⁻¹] where toFun r := r /₀ 1
theorem numerator_isUnit (s : S) : IsUnit (numeratorHom (s : R) : R[S⁻¹])

From now on, we will denote elements of R[S]−1 as fractions rs−1.
We show that the Ore localisation R[S]−1, if it exists, is the universal localisation of

monoids. Recall the definition of the universal localisation property from Definition 3.4,
particularly the associated commutative diagram. As a reminder, we can see the same
diagram again in Figure 5.2.
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Theorem 5.13. The localisation map

R→ R[S]−1

satisfies the universal localisation property in the category of monoids.

variable (f : R →* T) (fS : S →* Units T)
variable (hf : ∀ s : S, f s = fS s)

def universalMulHom : R[S⁻¹] →* T where
toFun x := x.liftExpand (fun r s => f r * ((fS s)⁻¹ : Units T)) fun r t s ht

theorem universalMulHom_commutes {r : R} :
universalMulHom f fS hf (numeratorHom r) = f r := by

theorem universalMulHom_unique (φ : R[S⁻¹] →* T)
(huniv : ∀ r : R, φ (numeratorHom r) = f r) :

The steps of the proof here are as follows: First, we define the proposed unique map
R[S]−1 → T as universalMulHom . Then, we show that the diagram in Figure 5.2 com-
mutes in universalMulHom_commutes . Finally, universalMulHom_unique states that
every ϕ such that the diagram commutes is equal to univeralMulHom .

We will prove the injectivity of the localisation map in Lemma 5.23.

If R is commutative, then the universal localisation has already been formalised in
Lean as Localization S . In this case, the localisation is also known as the group of
differences. We show that the two localisations coincide when R is commutative.

Theorem 5.14. Let R be a commutative monoid and S ⊆ R an Ore set. Then R[S]−1

is isomorphic to the group of differences of R and S.

noncomputable def equivMonoidLocalization : Localization S ≃* R[S⁻¹]

Note that the use of noncomputable is because the existing Localization is defined in
a noncomputable environment only. This is probably not a conceptual limitation but a
design choice.

5.3. Semirings
From now on, let R be a semiring. S ⊆ R is still an Ore set with respect to the structure
of a multiplicative monoid on R.

We already know that R[S]−1 has a multiplicative monoid structure. We proceed by
defining an addition on the elements of R[S]−1 that will turn the localisation into a
semiring. Later on, we will also give the localisation a ring structure if R is a ring. But
as we do not need the existence of additive inverses in R for anything but the existence
of additive inverses in R[S]−1, the localisation of semirings comes basically for free.

In the previous chapter, we had to take several steps to show that the multiplication
was well-defined. This is even more intricate for the addition, so let us proceed very
carefully and only define an addition for pairs in R× S at first.
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Definition 5.15. Let r1, r2 ∈ R, s1, s2 ∈ S. Let r′ ∈ R, s′ ∈ S such that s1s′ = s2r
′.

Then set
(r1, s1) + (r2, s2) := (r1s

′ + r2r
′, s1s

′).

def add'' (r₁ : R) (s₁ : S) (r₂ : R) (s₂ : S) : R[S⁻¹] :=
( r₁ * oreDenom (s₁ : R) s₂ +

r₂ * oreNum (s₁ : R) s₂) /ₒ (s₁ * oreDenom (s₁ : R) s₂)

Note that we already defined the sum to be an element of R[S]−1. This is possible
because we have no structural requirements yet. For now, the addition is just a map
between sets.

Note that the codomain is R[S]−1, and it has to be in order for Definition 5.15 to be
well-defined. Otherwise, the sum would definitely depend on the choice of (r′, s′).

Lemma 5.16. Definition 5.15 is independent of the choice of (r′, s′).

theorem add''_char (r₁ : R) (s₁ : S) (r₂ : R) (s₂ : S) (rb : R) (sb : S)
(hb : (s₁ : R) * sb = (s₂ : R) * rb) :
add'' r₁ s₁ r₂ s₂ = (r₁ * sb + r₂ * rb) /₀ (s₁ * sb)

Now we want to prove that the addition descends to a map

R[S]−1 ×R[S]−1 → R[S]−1.

That is, it is independent of the choice of representative in either argument. The order
in which we do that is we first show independence in the second argument, then com-
mutativity and then independence in the first argument. This is necessary because the
proofs of these statements rely on each other in that order. First, we show independence
in the second argument.

Lemma 5.17. For r1, r2, r3 ∈ R, s1, s2, s3 ∈ S, if

r2s2
−1 = r3s3

−1 ∈ R[S]−1,

then
(r1, s1) + (r2, s2) = (r1, s1) + (r3, s3).

def add' (r₂ : R) (s₂ : S) : R[S⁻¹] → R[S⁻¹] :=
( Quotient.lift

fun r₁s₁ : R × S => add'' r₁s₁.1 r₁s₁.2 r₂ s₂) <|

Note that the function add' is the same as the function add'' with the additional
knowledge that add' does not depend on the choice of representative in the second
argument.

Now, we prove the commutativity of the addition. In fact, we show that it is commu-
tative as a map (R× S)×R[S]−1 → R[S]−1.

Lemma 5.18. Let r1, r2 ∈ R, s1, s2 ∈ S. Then

(r1, s1) + r2s2
−1 = (r2, s2) + r1s1

−1.
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theorem add'_comm (r₁ r₂ : R) (s₁ s₂ : S) :
add' r₁ s₁ (r₂ /₀ s₂) = add' r₂ s₂ (r₁ /₀ s₁)

Finally, independence in the first argument follows from the previous two statements.

Lemma 5.19. For r1, r2, r3 ∈ R, s1, s2, s3 ∈ S, if

r1s1
−1 = r2s2

−1 ∈ R[S]−1,

then
(r1, s1) + (r3, s3) = (r2, s2) + (r3, s3).

def add : R[S⁻¹] → R[S⁻¹] → R[S⁻¹] := fun x =>
Quotient.lift (fun rs : R × S => add' rs.1 rs.2 x)

Thus, the addition is a well-defined map R[S]−1 × R[S]−1 → R[S]−1. It remains to
check that this addition turns R[S]−1 into a semiring.

Theorem 5.20. The localisation R[S]−1 together with the addition defined above is a
semiring.

The additive unit may be represented as any fraction 0s−1.

theorem add_assoc (x y z : R[S⁻¹]) : x + y + z = x + (y + z)
def zero : R[S⁻¹] := 0 /₀ 1
theorem zero_div_eq_zero (s : S) : 0 /₀ s = 0
theorem zero_add (x : R[S⁻¹]) : 0 + x = x
theorem left_distrib (x y z : R[S⁻¹]) : x * (y + z) = x * y + x * z
theorem right_distrib (x y z : R[S⁻¹]) : (x + y) * z = x * z + y * z

Now we show that R[S]−1 and the universal localisation RS coincide in our current
setting. Namely when R is a semiring and S ⊆ R is an Ore set. We do this by proving
the universal property of the localisation for R[S]−1. As we know that the universal
localisation is unique, this shows R[S]−1 = RS .

Theorem 5.21. The localisation map R → R[S]−1 as defined in Lemma 5.12 satisfies
the universal property from Definition 3.4 in the category of semirings.

variable (f : R →+* T) (fS : S →* Units T)
variable (hf : ∀ s : S, f s = fS s)
def universalHom : R[S⁻¹] →+* T :=

{ universalMulHom f.toMonoidHom fS hf
theorem universalHom_commutes {r : R} :

universalHom f fS hf (numeratorHom r) = f r
theorem universalHom_unique

(φ : R[S⁻¹] →+* T) (huniv : ∀ r : R, φ (numeratorHom r) = f r) :
φ = universalHom f fS hf

The proof has essentially the same steps as the proof for the universal property in the
category of monoids in Theorem 5.13. Note that the definition of universalHom shows
that the unique monoid-map R[S]−1 → T is a map of semirings.

Again, injectivity will be shown in Lemma 5.23.
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5.4. Rings
From now on, let R be a ring. S ⊆ R is still an Ore set. First, we show that then R[S]−1,
as defined for semirings, admits additive inverses and is, hence, a ring.

Lemma 5.22. In R[S]−1, (−r)s−1 is the additive inverse of rs−1.
Thus, R[S]−1 is a ring.

def neg : R[S⁻¹] → R[S⁻¹] :=
liftExpand (fun (r : R) (s : S) => -r /₀ s) fun r t s ht

Note that this, together with Theorem 5.21, also shows that R[S]−1 = RS if R is a
ring.

We have discussed in Chapter 3 the question of whether there exists a universal division
ring into which R embeds. Indeed, the Ore localisation is such a division ring if R is a
domain and satisfies the Ore condition with respect to the submonoid Rr 0.

Lemma 5.23. Suppose that R has no zero divisors and that 0 /∈ S. Then the localisation
map R→ R[S]−1 is injective.

theorem numeratorHom_inj (hS : S ≤ R⁰) :
Function.Injective (numeratorHom : R → R[S⁻¹])

Note that as it is the same map, this also shows that the localisation map R→ R[S]−1

is also injective as a map between semirings or monoids.

Theorem 5.24. Suppose that R is nontrivial and has no zero divisors. Then R[Rr 0]−1

is a division ring.

def inv : R[R⁰⁻¹] → R[R⁰⁻¹] :=
liftExpand

(fun r s =>
if hr : r = (0 : R) then (0 : R[R⁰⁻¹])
else s /₀ ⟨r, fun _ => eq_zero_of_ne_zero_of_mul_right_eq_zero hr⟩)

theorem mul_inv_cancel (x : R[R⁰⁻¹]) (h : x ≠ 0) : x * x⁻¹ = 1
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Part III.

Σ-invariants
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6. Characters
From now on, we will turn our attention to the following question: If G is a finitely
generated group and N ⩽ G a normal subgroup, how can we decide if N is also finitely
generated? We start by reviewing in this chapter the Σ-invariant, which answers this
question in case G/N is abelian. Apart from [BNS87], where Σ-invariants were intro-
duced, [Str13] provides a comprehensive survey of the topic. Everything we do in this
chapter may also be found there.

In Chapters 7 and 8, we are going to generalise the material of this chapter to the
case where G/N is nilpotent.

6.1. The character sphere
If G is a subgroup, any normal subgroup N ⩽ G is also the kernel of the projection map
G ↠ G/N . This fact provides a bridge between normal subgroups and maps defined
on G. If G/N is finitely generated torsion-free abelian, then there exists an embedding
G/N ↪→ (R,+) and hence a map Φ: G → R with kerΦ = N . Note that scaling R by
some factor does not change the kernel of Φ. So, as long as we are only interested in
kerΦ, we may consider Φ up to a scaling of R.

Definition 6.1. Let G be a group. A character of G is an equivalence class of group
homomorphisms Φ: G → (R,+) where two maps Φ and Ψ are equivalent if they differ
only by multiplication by a positive number. That is if there is some positive number
λ ∈ R+ such that Φ(g) = λΨ(g) for every g ∈ G.

The character sphere S(G) is the set of non-trivial characters of G where by trivial
character we mean the constant map g 7→ 0.

We will see in the next chapter why we only allow scaling by a positive factor.

Remark 6.2. Any group homomorphism Φ: G → R is defined entirely by the values
Φ takes on a generating set of G. If G has n generators, this defines an embedding of
Hom(G,R) as a linear subspace of Rn. Seeing the n-sphere as Sn = (Rn+1 r 0)/R+, we
get an embedding of S(G) into Sn−1, hence the name character sphere. This also gives
S(G) a topological structure as a subspace of Sn−1. If G is a free-abelian group, this
embedding is actually a homeomorphism.

Given two maps Φ,Ψ: G → R that represent the same equivalence class in S(G) we
have kerΦ = kerΨ. Hence, the kernel of a character is well-defined. This allows us to
interchangeably use characters and homomorphisms when we are only interested in their
kernels.
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Definition 6.3. Let G be a group and N ⩽ G a normal subgroup. The relative character
sphere S(G,N) is the subset of non-trivial characters Φ ∈ S(G) such that N ⩽ kerΦ.
Example 6.4. The character sphere S(Z) has just two elements: The maps that send
the generator of Z to a positive number and those that send the generator to a negative
number.

If N ⩽ G is a subgroup such that G/N ∼= Z, then S(G,N) also has just two elements,
namely the projection map concatenated with any of the characters of Z. More generally,
S(G,N) = S(G/N) is true for any group G and N ⩽ G.

Note that as R is an abelian group, any map Φ: G → R necessarily sends every
commutator [g, h] to 0. Hence Φ factors through the abelianisation Gab := G/[G,G].
Also, Φ sends any torsion element of Gab to 0. If G is finitely generated, then so is Gab,
so it may be written as Zn ⊕ T , where T contains the torsion elements. The map Φ
factors through the free abelianisation map G↠ Gab ↠ Zn and hence S(G) = S(G,N),
where N is the kernel of the free abelianisation map. We call a character irrational, if
kerΦ = N .
Example 6.5. To justify the name irrational, note that Φ may be written as the free
abelianisation map composed with some character Ψ ∈ S(G,N) = S(Zn). The character
Φ is irrational if and only if this Ψ is injective. Consider the case n = 2. Then any
representative of the character Ψ corresponds to some vector (x, y) ∈ R2, where x and
y are the images of the generators a and b of Z2. If x or y is 0, then Ψ is not injective.
Otherwise, if x/y ∈ Q, say x/y = p/q for some integers p, q, then

Ψ(aqb−p) = qx− py = 0,

so Ψ is again not injective. If, however, x/y is irrational, then the same argument shows
that Ψ is injective and hence Φ is irrational.

Similarly, a character of Zn is injective if no generator gets mapped to 0, and any pair
of generators has images that are at an irrational ratio.

6.2. Connected subsets of groups
A character Φ ∈ S(G) divides G into two halves: The preimages of the positive and
negative numbers. The Σ-invariant we will see in Section 6.3 asks if those halves are
connected. Let us first make precise what connected means in this context.
Definition 6.6. Let Γ be a graph and K ⊆ V (Γ) a subset of the vertices. The full
subgraph spanned by K of Γ is the subgraph whose vertex set is K and whose edge set
contains every edge of Γ which has both ends in K.
Definition 6.7. Let G be a group and K ⊆ G any subset. We call K coarsely connected
as a subset of G if there exists a finite subset S ⊆ G such that the full subgraph of the
Cayley graph Cay(G,S) spanned by K is connected.

If G is finitely generated and the full subgraph of Cay(G,S) spanned by K is coarsely
connected for every finite generating set S, then we say that K is connected as a subset
of G.

53
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Figure 6.1.: The set of red vertices is coarsely connected as it is connected by a 2-path:
A path, where at least every other vertex is red.

Remark 6.8. Note that in the definition of coarsely connected, we do not require that
S generates G as a group. Hence, G ⊆ G is coarsely connected if and only if G is finitely
generated. In this case, G is also connected.

Remark 6.9.

1. If G itself is finitely generated, then we may always ask that S is a generating set
of G as every finite subset of G is contained in a finite generating set of G.

2. Suppose G is finitely generated and S is a finite generating set. Then K ⊆ G is
coarsely connected if and only if there exists some constant n ∈ N such that for
every g, h ∈ K, there exists an n-path in Cay(G,S) from g to h supported on K.
Here, an n-path supported on K is a path in Cay(G,S) such that any segment of
n consecutive vertices on the path contains at least one point in K. See Figure 6.1
for an example.
To see that this is equivalent to the definition of coarse connection, note the follow-
ing: If T is another finite generating set of G, then any 1-path in Cay(G,S) is an
n-path in Cay(G,T ) where n is an upper bound to the T -wordlength of elements
of S. Conversely, if K is connected by n-paths in Cay(G,S), then taking T to
be the set of all words in S of length at most n, we get that the full subgraph of
Cay(G,T ) spanned by K is connected.

3. If G is contained in a finitely generated group G′ such that K is coarsely connected
as a subset of G′, then K is also coarsely connected as a subset of G: Pick a finite
generating set S′ of G′ and any generating set S of G. Let n be such that any
two elements of K are connected by an n-path in S′. There are only finitely many
words in K of length at most n in S′, so their length in S is bounded from above
by some m. Also, we use only a finite subset T ⊆ S of the generators to write
these words. Hence every n-path in S′ is also an m-path in T , so K is coarsely
connected as a subset of G.
Conversely, if K is coarsely connected as a subset of G, then it is also coarsely
connected as a subset of G′.

Example 6.10. In the group of integers, the subset of even numbers is coarsely con-
nected as it is connected with respect to the generating set {X,X2}. The set of powers
of 2 is not coarsely connected because the distance between two adjacent powers of 2 is
unbounded.
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Similarly, for any surjective map Φ: F2 ↠ Z, the preimage of the positive numbers is
not coarsely connected. We will see an illustration of the latter in Figure 6.2.

In the standard literature, coarse connectedness is usually only defined for finitely
generated groups. The extension to non-finitely generated groups is our own addition,
and it might not be apparent at first why this is a good definition. But we will see in
Section 8.2 how this definition ties in nicely with the finitely generated case.

6.3. Σ-invariants
Now, we have established the background necessary to introduce the Σ-invariant.

Definition 6.11. Let G be a finitely generated group. Then the (first) Σ-invariant
Σ1(G) ⊆ S(G) is the subset containing all characters Φ such that Φ−1([0,∞)) is con-
nected as a subset of G.

Remark 6.12. The Σ-invariant is also known as BNS-invariant, where BNS is for Robert
Bieri, Walter Neumann, and Ralph Strebel. As I believe that generally, we should prefer
names for objects that are not derived from their authors, and the name Σ-invariant is
also established, that is the name we use in this work.

Remark 6.13. Note that for a character Φ, connectedness of Φ−1([0,∞) as a sub-
graph of the Cayley graph is independent of the choice of finite generating set. Hence
Φ−1([0,∞)) is connected if and only if it is coarsely connected.

The standard definition of the Σ-invariant is to have it contain all characters Φ ∈ S(G)
such that the full subgraph of Cay(G,S) spanned by Φ−1([0,∞)) is connected for some
generating set S. Then, one shows that this does not actually depend on S. With
the knowledge that connectedness does not depend on the choice of generating set,
the definition we presented here is immediately equivalent to the standard one. Our
formulation will be better suited to the generalisation we will see in Section 7.4.

The original definition of Σ1(G) was yet different from the modern definition in the
literature and from Definition 6.11.

Lemma 6.14. Let G be a group with finite generating set S. Then Φ ∈ Σ1(G) if and
only if the monoid Φ−1([0,∞)) is of type FP1.

Remark 6.15. In Definition 1.17, we have defined the finiteness properties only for
groups. But at no point did we use that G is actually a group, and the same definition
works for monoids. Beware, however, that in contrast to groups, not all monoids of type
FP1 are finitely generated.

For example, if Φ: Z2 → R is an irrational - that is, injective - character, then
Φ−1([0,∞)) is FP1 by the above lemma, and it is also possible to explicitly construct a
resolution to prove this fact directly.

But M := Φ−1([0,∞)) is not finitely generated as a monoid: Take for example

Φ: Z2 = 〈a, b〉 → R, a 7→ 1, b 7→ π.
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This is purely for illustration. Any other irrational character would work just as well.
Let S ⊆ Φ−1((0,∞)) be any finite subset. Note that for now, S does not contain any

element that maps to 0 but is otherwise an arbitrary finite subset of our monoid M .
Then S ⊆ Z2 maps via Φ to some finite set of positive real numbers.

Thus, Φ(S) has a positive minimum, and the submonoid of R generated by Φ(S) has
a minimal non-zero element. But Φ(Z2) contains a sequence approaching 0 from above:
any sequence of rational numbers p/q approaching π from above yields a sequence

apb−q 7→ p− qπ

of positive numbers converging to 0. So Φ(S) is not a generating set of Φ(Z2) ∩ (0,∞)
and hence S does not generate Φ−1((0,∞)).

Since for any generating set T ⊆ M , the intersection T ∩ Φ−1((0,∞)) has to be a
generating set for Φ−1((0,∞)), the monoid M is not finitely generated.

While Definition 6.11 is the definition of Σ1(G) we will primarily be using, the char-
acterisation via Lemma 6.14 has a canonical generalisation.

Definition 6.16. Let G be a group with finite generating set S. Then the n’th Σ-
invariant of G is the subset Σn(G) of S(G) containing all characters Φ such that the
monoid Φ−1([0,∞)) is of type FPn.

We mention this here because much of this theory applies analogously if we replace
“finitely generated” by FPn and Σ1(G) by Σn(G). For full details, see [Ren88].

Remark 6.17. It is also possible to generalise Σ1(G) by starting from the geometric
characterisation in Definition 6.11. This yields a different notion of Σn(G). The differ-
ence is similar to the difference between the geometric and algebraic finiteness properties
Fn and FPn.

The relative character sphere and first Σ-invariant are connected to finite generated-
ness of subgroups via the following theorem.

Theorem 6.18 (Bieri, Neumann, Strebel [BNS87]). Let G be a finitely generated group
and N ⩽ G a normal subgroup such that G/N is abelian.

Then N is finitely generated if and only if S(G,N) ⊆ Σ1(G).

Example 6.19. If G/N ∼= Z, then S(G,N) has only two elements, namely the pro-
jection map and the projection map concatenated with multiplication by −1. Hence,
Theorem 6.18 states that N is finitely generated if and only if the preimages of the
positive and the negative numbers under the projection map are connected.

Have a look at Figure 6.2. We see the case where G = Z2 and N is the subgroup
generated by one of the free generators. Here, N is isomorphic to Z. In particular, N
is finitely generated, and both the positive and negative half of the Cayley graph are
connected.
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Figure 6.2.: Cayley graphs of Z2 and F2 divided into positive and negative elements by
the projections onto one generator, distinguished by colour.

On the other hand, if G = 〈a, b〉 is the free group on two generators, then the kernel
of the projection onto one of the generators, say onto 〈a〉, is

〈〈b〉〉 = 〈a−ibai (i ∈ Z)〉.

This kernel is not finitely generated, and the two halves of Cay(F2) are not connected.

For the cases G = Z2 or G = F2, we have just seen that either both characters or
neither character in S(G,N) is in Σ1(G). So Theorem 6.18 might as well have stated
that kerΦ is finitely generated if and only if Φ ∈ Σ1(G) in these cases. The Baumslag-
Solitar group provides an example where this formulation does not suffice because one
character is in Σ1(G) and its negative is not. Recall from Section 2.3 that the Baumslag-
Solitar group is BS(1, 2) = 〈a, b | ba = ab2〉 and that Cay(BS(1, 2), {a, b}) projects onto
the infinite binary tree we see in Figure 6.3. It may be seen as the left cosets of BS(1, 2)
with respect to the multiplication by b. The character

Φ: BS(1, 2) ↠ Z, a 7→ 1, b 7→ 0

factors through this projection and the value Φ(g) is given by the height of g in the
tree. The positive half of the tree is connected whereas the negative half is not, so
Φ ∈ Σ1(BS(1, 2)) but −Φ /∈ Σ1(BS(1, 2)). By Theorem 6.18, kerΦ is hence not finitely
generated.
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Figure 6.3.: A quotient of the Cayley graph of the Baumslag-Solitar group BS(1, 2).
Colours indicate elements that get mapped to positive and negative numbers,
respectively, by the projection onto the first generator.
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7. From characters to orders
Theorem 6.18 gives us a criterion for the kernel of a map being finitely generated only
if the codomain of that map is an abelian group. The criterion then has us consider all
maps to R. We will generalise the theorem to maps onto non-abelian groups. For that,
we need to find an analogue of “maps to R”. The analogue will be partial orders induced
by maps onto some group Q. In this chapter, we will establish how we can identify a
character Φ ∈ S(G) with an order on G. This allows us to see the Σ-invariant as a set
of orders on G. We propose an extension of the Σ-invariant for non-abelian groups such
that it also includes orders not induced by characters.

7.1. Partially ordered groups
We start by having a look at partially ordered groups in general. The material in this
section is treated more thoroughly in [KM96] and [Gla99].

Definition 7.1. Let G be a group. A partial order on G is a relation ≺ on the set G
such that for all f, g, h ∈ G

• g ⊀ g (antireflexive)

• g ≺ h⇒ h ⊀ g (antisymmetric)

• f ≺ g and g ≺ h⇒ f ≺ h (transitive)

Additionally, a partial order may have the following properties

• f ≺ g ⇒ hf ≺ hg (left invariant)

• f ≺ g ⇒ fh ≺ gh (right invariant)

and ≺ is said to be bi-invariant if it satisfies both.

Remark 7.2.

1. The symbol = always refers to honest equality as elements of G.

2. For an order ≺, we set

g ≼ h ⇐⇒ g ≺ h or g = h.

The symbols � and ≽ are defined as the respective opposite orders where

g � h ⇐⇒ h ≺ g and g ≽ h ⇐⇒ h ≼ g.
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3. In the literature, one often finds the definition of (G,≼) instead of (G,≺) as the
definition of a partially ordered group. The symbols ≺,≽,� are then derived.
However, I find it often makes notation easier to view ≺ as “the order” so that is
the convention we use here.

4. When we use <,⩽, > and ⩾, we always mean them in their well-established, canon-
ical meanings, such as the standard order on the real numbers.

Let us give some important examples. We will review them in more detail in Defini-
tion 7.7 and Definition 7.14.

Example 7.3.

1. The trivial order g ⊀ h for each pair g, h ∈ G is a bi-invariant partial order for any
group G.

2. For any character Φ: G→ R, we can define a bi-invariant partial order ≺ on G by
letting

g ≺ h ⇐⇒ Φ(g) < Φ(h).

For Φ = 0, we obtain the trivial order on G.
Note that the statement Φ(g) < Φ(h) does not depend on the choice of represen-
tative for the character Φ.

3. For G = Z2 = 〈a, b | [a, b]〉, there is the lexicographic order

aibj ≺ akbl ⇐⇒

{
i < k or
i = k and j < l

We have already encountered this order in Example 3.12.

We say (G,≺) or sometimes just G is an ordered group as a shortcut for G being a
group and ≺ a bi-invariant partial order on G. In this work, any order will be partial
and bi-invariant unless noted otherwise.

Definition 7.4. Let G be an ordered group.

1. Two elements g, h ∈ G are called comparable if g ≺ h or h ≺ g and incomparable
otherwise.

2. An order is called total if any two elements are comparable or equal.

3. g ∈ G is called positive if 1 ≺ g and negative if g ≺ 1.

4. G≻ := {g ∈ G | g � 1} is called the positive cone of (G,≺).

5. For the inclusion of a subset ι : S ↪→ G the restriction is the partial order ≺|S on
S such that for any s, t ∈ S

s ≺|S t ⇐⇒ ι(s) ≺ ι(t).
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6. A subset S ⊆ G is called an antichain if ≺|S is the trivial order.

7. An antichain S is maximal if the only antichain containing S is S itself. We say
that S is a maximal antichain subgroup if it is an antichain and a subgroup, and
it is maximal amongst subgroups that are antichains.

8. For a subset S ⊆ G and ∗ any of {≺,�,≼,≽}, set

S∗ := {g ∈ G | ∃s ∈ S : g ∗ s}.

Remark 7.5.

1. Being incomparable is, in general, not transitive.

2. A subgroup H ⩽ G is an antichain if and only if H ∩ G≻ is the empty set. The
same cannot be said if H is just any subset.

3. The set S≻ may also be described as S≻ = SG≻ = {sg | s ∈ S, g ∈ G≻} and
similarly for S≺.

4. For any subset S ⊆ G we have S≺ ∩ S≽ = ∅ if and only if S is an antichain.
Additionally, S≺ ∪ S≽ = G if and only if S is a maximal antichain. The latter is
not always true if S is a maximal antichain subgroup, as we will see, for instance,
in Example 7.20.

5. If g is a torsion element of G, then 1 and g are necessarily incomparable since if g
is positive, then

1 ≺ g ≺ g2 ≺ · · · ≺ gn = 1

contradicts antireflexivity. The proof if g is negative is analogous.
If the set of all torsion elements T is a normal subgroup, then any order on G
is induced by an order on G/T - a notion we will make precise in Definition 7.7.
Since this will almost always be the case in this work, it suffices for us to think of
a generic group G as torsion-free.

It is often helpful and allows for more ergonomic notation to think of the positive
cone instead of the order itself. The following lemma tells us that an order is uniquely
determined by its positive cone.

Lemma 7.6. Let G be a group.

1. If G is ordered, the positive cone G≻ is closed under multiplication with elements
of G≻ and under conjugation with elements of G. If g ∈ G≻ then g−1 /∈ G≻.

2. For any subset S ⊆ G that is closed under multiplication with S and under conju-
gation with elements of G and such that S ∩ S−1 = ∅, there is a unique order on
G such that G≻ = S.

Proof. 1. This is immediate from the definition of a bi-invariant partial order.
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2. The postulated order is
g ≺ h ⇐⇒ g−1h ∈ S.

Checking that this is indeed an order is, again, essentially just applying the defi-
nition. Transitivity follows from the assumption that S is closed under multipli-
cation. For anti-symmetry, we use that S ∩ S−1 = ∅. In particular, 1 /∈ S, so ≺ is
anti-reflexive. Left invariance is straightforward, and for right invariance, we need
S closed under conjugation.
As for uniqueness, note that

g ≺ h ⇐⇒ 1 ≺ g−1h ⇐⇒ g−1h ∈ G≻ = S

is necessarily true for any bi-invariant relation with G≻ = S.

7.2. Orders induced by characters
Our goal will later be to translate group homomorphism properties into a language based
on partial orders. In this section, we investigate how the two concepts relate. While
many of these ideas are used implicitly in, for example, [Kie20], I am not aware of any
sources where this is made explicit.

Definition 7.7. Let (G,≺) be an ordered group.

1. Let Q be another ordered group and ϕ : G→ Q a group homomorphism. Then ϕ
is called order-preserving if for all g, h ∈ G we have

g ≺ h⇒ ϕ(g) ≼ ϕ(h).

2. Let ≺′ be another order on G. We say that ≺ is a suborder of ≺′ if

G≻ ⊆ G≻′
.

3. Let (Q,≺Q) be an ordered group and Φ: G → Q order-preserving. We say that
≺ is induced by (Φ,≺Q) if the following condition holds: For every order ≺′ on G
such that Φ: (G,≺′)→ (Q,≺Q) is order-preserving, ≺′ is a suborder of ≺.
We also say that ≺ is induced by Φ or by ≺Q if the other object is clear from the
context.

4. Let (H,≺H) be an ordered group and ι : H → G order-preserving. We say that
≺ is induced by (ι,≺H) if the following condition holds: For every order ≺′ on G
such that ι : (H,≺H)→ (G,≺′) is order-preserving, ≺ is a suborder of ≺′.
Again, we say that ≺ is induced by ι or by ≺H if the other is clear. We denote the
induced orders by ≺Φ−1

Q and ≺ιH respectively or just by ≺ if there is no chance of
confusion.
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5. If (Q,≺Q) is an ordered group and Φ: G→ Q such that ≺ is induced by (Φ,≺Q),
then Φ is order-inducing on the domain. An order-inducing map on the codomain
ι : H → G is defined analogously. We will omit the (co)domain part if it is clear
on which side a map is order-inducing.

Remark 7.8. The map ι is not necessarily injective. However, if ι induces an or-
der on its image, we may also describe that order as the order induced by the inclu-
sion ι : H/ ker ι ↪→ G. In this case, the projection H ↠ H/ ker ι is necessarily order-
preserving. Thus, whenever ι is order-inducing, ι can be made injective without losing
information about the order on G. We will elaborate on this argument in Lemma 7.9.

The definition of induced order on the domain essentially says that the induced order is
the largest order such that the inducing map is order-preserving. Similarly, the induced
order on the codomain is the smallest order such that the inducting map is order-
preserving. Note the analogy between this definition and the definition of, for example,
the division closure. While the definition as phrased above might be most natural, the
following description is often easier to handle.

Lemma 7.9. Let G be a group and Q,H be ordered groups. Let Φ: G → Q and
ι : H → G.

Then

1. Φ induces the following order on G:

1 ≺Φ−1
g ⇐⇒ 1 ≺ Φ(g)

2. Consider the relation
1 ≺′ g ⇐⇒ g ∈ G · ι(H≻)r 1

Here, G · ι(H≻) denotes the image of ι(H≻) under conjugation with elements in
G. If ι induces an order on G, then ≺′ is an order and it is the order induced by ι.

Proof.

1. This is the order such that G≻ = Φ−1(Q≻). Checking that Φ−1(Q≻) is closed under
multiplication, conjugation with g ∈ G and does not contain two elements inverse
to each other is straightforward since we know that Q≻ has all these properties.
The order is then well-defined by Lemma 7.6.
As any order on G such that Φ is order-preserving requires Φ(G≻) ⊆ Q≻, all such
orders are suborders of ≺Φ−1 .

2. If ι is order-preserving, then every element of ι(H≻)r1 has to be positive. Because
the positive cone of the induced order has to be closed under conjugation, this
extends to G · ι(H≻) r 1. Hence, if the relation ≺′ defined in the statement is
actually an order, then it is a suborder of every order such that ι is order-preserving.
Checking that G · ι(H≻) r 1 is closed under multiplication and conjugation is
straightforward. It may, however, contain two elements inverse to each other. But
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in this case, the above argument shows that ι cannot be order-preserving for any
order on G and hence ι does not induce any order.

Remark 7.10. In particular, any map Φ with an ordered codomain induces an order
on the domain. But not every map ι with an ordered domain induces an order on the
codomain. However, it is easy to tell if a given order on the codomain is induced by ι.
Especially if ι(H≻) is already closed under conjugation with G, then this is the positive
cone of the order induced by ι. Also, if G admits some order such that G≻ ⊆ ι(H), then
that order is induced by ι.

Example 7.11. Let Φ: G → R and consider R to be ordered by the standard order.
Then ≺Φ−1 is the order on G with G≻ = Φ−1((0,∞)). As (0,∞) is preserved by
multiplication with a positive number, two maps Φ,Ψ: G→ R induce the same order if
they represent the same character. Thus, we may say that ≺ is induced by the character
Φ.

We may chain order-inducing maps as expected:

Lemma 7.12. Let there be three ordered groups (G,≺G), (H,≺H) and (K,≺K). Let
Φ: G→ H and Ψ: H → K be maps of groups.

1. If ≺H is induced by Ψ and ≺G is induced by Φ, then ≺G is also induced by Ψ ◦Φ.

2. If ≺H is induced by Φ and ≺K is induced by Ψ, then ≺K is also induced by Ψ ◦Φ.

Proof. For the first part, from Lemma 7.9 we know that

1 ≺G g ⇐⇒ 1 ≺H Φ(g) ⇐⇒ 1 ≺K (Ψ ◦ Φ)(g)

and hence ≺G =≺(Ψ◦Φ)−1

K . The second part may be proven similarly.

In view of Theorem 6.18, the kernel of a map is particularly interesting to us. Given a
map that is order-inducing on the domain, we would like to know if we can recover the
kernel of that map just by looking at the induced order. This is not always possible, for
example, when both the inducing and the induced order are trivial. But in most other
cases, we get some restrictions on what the kernel might have been.

Lemma 7.13. Let G be a finitely generated group, Q an ordered group, Φ: G↠ Q onto
and let G carry the order induced by Φ. Then:

1. If K ⊆ G is an antichain, then so is Φ(K). If K is maximal then Φ(K) is also
maximal.

2. If P ⊆ Q is an antichain, then so is Φ−1(P ). If P is maximal then Φ−1(P ) is also
maximal.

3. For any maximal antichain K ⊆ G containing 1 we have kerΦ ⊆ K.
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4. If Q is totally ordered, kerΦ is an antichain and every other antichain that contains
1 is contained in kerΦ. In particular, kerΦ is the only maximal antichain subgroup.
It is maximal even among all antichains.

Proof.

1. As Φ induces ≺, if Φ(k) ≺ Φ(k′) then k ≺ k′, so Φ(K) is an antichain.
Now suppose there is a q ∈ QrΦ(Q) such that q is incomparable to every k ∈ Φ(K).
Then any preimage q0 of q is incomparable to any element of K. This contradicts
the maximality of K, so Φ(K) is also maximal.

2. Suppose there are comparable g, h ∈ Φ−1(P ). Then Φ(g),Φ(h) ∈ P are also
comparable but P is an antichain. Hence, Φ−1(P ) must be an antichain.
Suppose there is a larger antichain Φ−1(P ) ( H ⊆ G. Then P ( Φ(H) also is an
antichain by (1). So P cannot be maximal.

3. By (1), Φ(K) is a maximal antichain in Q that contains 1. (2) tells us that then
Φ−1(Φ(K)) is an antichain containing K. As K is maximal, this means

K = Φ−1(Φ(K)) ⊇ Φ−1(1) = kerΦ.

4. If Q is totally ordered, the only maximal antichain containing 1 is {1}. By (2),
kerΦ is a maximal antichain and by (1) there cannot be any other that contains
1. Hence, kerΦ contains all other antichains that contain 1.

We have already seen the lexicographic order several times. Actually, most orders we
have seen so far may be seen as lexicographic in some way, so let us make the notion
precise.
Definition 7.14. Let

0→ H
ι
↪→ G

π↠ Q→ 0

be an exact sequence of groups and suppose that H and Q are ordered by ≺H and ≺Q
respectively. Further assume that ι induces an order on G.

Then the lexicographic order with respect to this sequence is the order ≺G such that

1 ≺G g ⇐⇒ g ∈ π−1(Q≻) or g ∈ G · ι(H≻)

If both ≺H and ≺Q are non-trivial, then ≺G is properly lexicographic.
To see that the lexicographic order is well-defined, we have to check that the positive

cone satisfies the conditions of Lemma 7.6. That is, that π−1(Q≻)∪G · ι(H≻) is closed
under multiplication with itself and under conjugation with elements of G. It is closed
under conjugation because both π−1(Q≻) and G · ι(H≻) are. Also, both sets are multi-
plicatively closed. So we only need to check that for g ∈ π−1(Q≻), h ∈ G · ι(H≻), we
have 1 ≺G gh and 1 ≺G hg. Indeed, as h ∈ G · ι(H≻) ⊆ kerπ,

π(gh) = π(g) = π(hg)

and hence gh, hg ∈ π−1(Q≻).
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(a) total, full, archimedean (b) non-total, full, archimedean

(c) non-total, non-full, archimedean (d) total, full, non-archimedean

Figure 7.1.: Orders on Z2.

Remark 7.15. For a lexicographic order with respect to some sequence H ↪→ G ↠ Q,
note that any two given elements of G either have different images in Q or they lie in the
same H-coset. Hence, to compare those elements, we first try comparing their images
in Q. If they have the same image, we instead compare them using the order induced
by H. In case G is a semidirect product G = H nQ, this means comparing the Q factor
and then the H factor.

The lexicographic order has both ≺π−1

Q and ≺ιH as suborders. In fact, it is the smallest
such order. So one may think about it as “induced by π and ι together”.

7.3. Full archimedean orders
With these tools at hand, we can construct a multitude of orders. Given a character
Φ ∈ S(G), we can already construct the induced order on G. Now, we study how to
reconstruct the inducing character from a given order. Also, we will see how we can
decide if such a character even exists.

Let us start with an example. In Figure 7.1 we see some orders on Z2. For now, we
only look at the pictures. The properties full and archimedean from the captions will be
defined in Definition 7.18 and Definition 7.16.
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(a) is an order induced by an injective map to R. Such a map corresponds to a line at
an irrational slope. Elements are ordered by their oriented distance to that line. This
distance is unique for every element, so the order is total.

Similarly for (b). But here, the inducing map has image isomorphic to Z, so the line
is at a rational slope. Points on the line are elements of the kernel of the inducing map.
Distances are no longer unique. For example, all points on the line have distance 0 from
it. Two elements at the same distance are incomparable.

(c) is an order that is induced by the inclusion of Z into Z2. All elements comparable
to 1 lie in some copy of Z embedded into Z2. In the picture, this is the coloured diagonal
line. Comparability divides Z2 into equivalence classes that correspond to parallels of
the coloured lines.

Finally, (d) is a lexicographic order corresponding to the sequence Z ↪→ Z2 ↠ Z
where both factors are non-trivially ordered. Note that this picture may be obtained by
overlaying (b) with (c). This corresponds to the fact that we may use either copy of Z
in the above sequence to compare elements in the lexicographic order.

In fact, each of (b), (c) and (d) may be seen as lexicographic with respect to the
sequence Z ↪→ Z2 ↠ Z. In (b), the left factor is ordered trivially. In (c), the right factor
is ordered trivially. In (d), neither factor is ordered trivially. Thus, (d) are the only
properly lexicographic orders.

In Example 7.20, we will see how every non-trivial order on Z2 falls into exactly one
of these four categories.

Recall that our goal is to translate a statement about characters into a statement
about orders. Thus, we need some way to recognise orders induced by characters. Note
that only (a) and (b) are induced by maps to R. Hence, we must distinguish these orders
from (c) and (d).

Definition 7.16. Let G be an ordered group and g, h ∈ G. We say that g is infinitesimal
with respect to h, if gi ≺ h for all i ∈ Z. In this case, we write g Î h.

An order is called archimedean if it does not admit any positive infinitesimal elements.

Remark 7.17.

1. The archimedean property is well-established for totally ordered groups. However,
there are minor differences between the definitions of archimedean for partially
ordered groups in different sources. The definition above is the one from [KM96].

2. The neutral element 1 is infinitesimal with respect to any positive element.

3. If ≺G is a lexicographic order with respect to some orders ≺Q and ≺H , then ≺G is
archimedean if and only if at least one of ≺Q and ≺H is trivial and the other one
is archimedean. In particular, an induced order is archimedean if and only if the
inducing order is. Moreover, a properly lexicographic order is non-archimedean.

4. It is a fact due to Hölder [Höl01] that every totally ordered archimedean group is
a subgroup of R. An account in English may be found in [KM96]. This is not the
case for partially ordered groups, as we will see in Example 8.1.
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While the archimedean property distinguishes properly lexicographic orders from the
others, it is not sufficient to recognise orders induced by characters. Thus, we introduce
the notion of full orders.

Definition 7.18. Let (G,≺) be an ordered group.

1. The order ≺ is called primitive, if for every g, h ∈ G and every n ∈ N we have
gn ≺ hn ⇒ g ≺ h.

2. ≺ is called factorising if for any antichain normal subgroup H ⩽ G, ≺ is induced
by the projection G↠ G/H for some order on G/H.

3. ≺ is called full if it has both above properties.

Remark 7.19. Any 1 ≺ g ∈ G spans a totally ordered subgroup 〈g〉⩽G. As g cannot
be a torsion element, this subgroup is isomorphic to Z. If ≺ is primitive, then any other
cyclic subgroup of G containing 〈g〉 is also totally ordered.

To familiarise ourselves with the notion, we have a look at full archimedean orders on
abelian groups. For the following example, we don’t provide a proof. But it will be a
corollary of Theorem 7.23.

Example 7.20.

1. On Z = 〈X〉, there are exactly two non-trivial primitive orders: The standard
order, where X � 1 and the opposite order, where we interchange the meanings of
“positive” and “negative”. That is the unique primitive order where X ≺ 1. The
isomorphism

(Z,≺)→ (Z,�), X 7→ X−1

is order-inducing in either direction.
If we do not require our order to be primitive, any submonoid that does not contain
any two elements inverse to each other defines an order on Z. This includes for
example the monoids 2N ⊆ Z and {1, Xk | k⩾ 2} ⊆ Z.
For primitive orders, the condition that the order is factorising is void on Z because
any proper quotient Z/N is finite and hence necessarily trivially ordered. If a non-
trivial subgroup N ⩽ Z is an antichain, then all of Z is trivially ordered. The
trivial order is induced by any map to a trivially ordered group.

2. On Zn, any primitive order is total or lexicographic. Thus, we may construct all
non-total primitive orders on a finitely generated abelian group by writing it as an
extension N ↪→ G ↠ Q. As N and Q are also abelian groups and of lower rank
than G, we can construct their orders by inductively using the same construction.
The resulting order on G is archimedean if among all the steps of the construction,
there was at most one factor N or Q that was non-trivially ordered. It is factorising
and hence full if at every step of constructing a lexicographic order, the following
holds: If N is trivially ordered, then so is Q.
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3. To make the previous example more concrete, consider the case n = 2 and recall
Figure 7.1. When writing Z2 as a product of abelian groups, we can either use
just one factor Z2 and order that totally. In this case, we obtain an order like
(a). Or we decompose it into two factors A ↪→ Z2 ↠ B, where both A and B are
isomorphic to Z. Then we can order A trivially and B totally as in (b), the other
way round as in (c), or, if we order both factors totally, we get (d).
Note that an order on Z2 is induced by a map to R if and only if it is full and archi-
medean. Also note that totality distinguishes (a) and (d) from (b) and (c). Hence,
this is not a helpful criterion for finding orders that are induced by characters.
This is why we consider partial orders in the first place.
The fact that every primitive order is full or archimedean is due to n = 2 being
too small. Z3 admits an order that is primitive but neither full nor archimedean.
Namely the lexicographic order with respect to Z ↪→ Z3 ↠ Z2, where Z is trivially
ordered and Z2 carries a total non-archimedean order. The same order can be
realised as a lexicographic order with respect to Z2 ↪→ Z3 ↠ Z.

Remark 7.21. If ≺G is induced by G↠ (Q,≺Q) and ≺Q is full, then so is ≺G. But if
≺G is induced by (H,≺H) ↪→ G and ≺H is full, then ≺G need not be full. For example,
if 2Z is taken to be ordered by the standard order, the order on Z induced by 2Z ↪→ Z
is the order with Z≻ = 2N, which is not full as we have seen in Example 7.20.

While being full is not true for every order induced by a full order, the archimedean
property does not have this issue.

Lemma 7.22. Let (G,≺) be an ordered group.

1. Suppose that ≺ is induced by a map Φ: G↠ Q. If Q is archimedean then so is ≺.

2. Suppose that ≺ is induced by a map H ↪→ G. If H is archimedean, then so is ≺.

Proof. For the first part let g, g′ ∈ G such that gk ≺ g′ for every k ∈ Z. Then

Φ(g)k ≺ Φ(g′) ∈ Q.

If Q is archimedean, this means that Φ(g) /∈ Q≻. By Lemma 7.9, G≻ = Φ−1(Q≻) and
as g ∈ Φ−1(Φ(g)), g cannot be positive in G.

The proof of the second part is analogous.

To wrap up, we classify full archimedean orders on finitely generated abelian groups.
This is also a proof for Example 7.20.

Theorem 7.23. Let (G,≺) be a finitely generated abelian group and ≺ a full archimedean
order. Then

1. G contains a unique maximal antichain subgroup H,

2. G/H is totally ordered,
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3. and ≺ is induced by a map Φ: G→ R, where R carries the standard order.

Proof.

1. We may write G = F ⊕T where F is a free-abelian group and T is the torsion part.
As T is an antichain by Remark 7.5, and ≺ is full, ≺ is induced by the projection
G ↠ F . Thus, we may assume without loss of generality that G = Zn for some
n ∈ N0.
We proceed by induction on n. For n = 0, the only subgroup is the trivial group,
and it is indeed an antichain.
Otherwise, if G is totally ordered, the trivial group is the only antichain and hence
also maximal.
If G is not totally ordered, any element incomparable to 1 generates an antichain
subgroup C ⩽ G with C ∼= Z. In this case, ≺ is induced by the projection onto
G/C ∼= Zn−1⊕T ′. But the torsion part T ′ is again trivially ordered so ≺ is actually
induced by the projection G↠ Zn−1.
By induction, Zn−1 contains a unique maximal antichain subgroup H ′. Its preim-
age under the projection is by Lemma 7.13 the unique maximal antichain subgroup
of G.

2. Let g ∈ G/H be incomparable to 1 and let g0 be a preimage of g under the
projection G ↠ G/H. Then g0 is also incomparable to 1. As H is the only
maximal antichain subgroup, g0 ∈ H. But then, g = 1 so G/H is totally ordered.

3. In Remark 7.17, we mentioned that every totally ordered archimedean group is
a subgroup of R. In other words, every order on such a group is induced by the
inclusion of said group into R.
We know that ≺ is induced by an order on G/H and G/H is a totally ordered
abelian group. It is also archimedean as otherwise suppose there are 1 ≺ g Î

g′ ∈ G/H. But then if g0, g′0 are some preimages of these elements in G, we have
1 ≺ g0 Î g′0. But this contradicts G being archimedean. By Lemma 7.12, ≺ is
induced by a map G↠ G/H ↪→ R.

7.4. Order Σ-invariants
Now we know that we can identify a character Φ ∈ S(G) with the full archimedean order
≺Φ−1 that it induces on G. We have seen that if G is abelian, this relation is one-to-one.
That is, every full archimedean order is induced by a unique character on G. Thus, if
N ⩽ G is a normal subgroup such that G/N is abelian, we get an identification of full
archimedean orders on G such that N is an antichain with characters on G.

Using this identification, we get a reformulation of Theorem 6.18 as follows.
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Theorem 7.24. Let G be a finitely generated group and N ⩽ G such that G/N is abelian.
Then N is finitely generated if and only if N≽ is connected for every full archimedean
order ≺ on G such that N is an antichain.

Proof. Suppose that N is finitely generated. If ≺ is a full archimedean order on G, then
by Theorem 7.23, there exists a unique maximal antichain subgroup H ⩽ G. By the same
theorem, ≺ is induced by some character Φ: G → R and since H is an antichain, this
character factors through G/H. As H is maximal, it contains N and hence Φ ∈ S(G,N).
By Theorem 6.18, Φ ∈ Σ1(G). Thus Φ−1([0,∞)) = H≽ is connected. One can use G-
invariance of ≺ to show that N≽ is then also connected. We omit this step here, but it
will be covered by the proof of Theorem 8.11.

Conversely, every full archimedean order such that N is an antichain is induced by a
character Φ ∈ S(G,N). Again, one can show that if N≽ is connected then so is H≽ and
hence Φ ∈ Σ1(G). As every character also induces a full archimedean order, this shows
that S(G,N) ⊆ Σ1(G) and hence N is finitely generated by Theorem 6.18.

In this section, we transfer the notions of Σ-invariant and character sphere to orders.

Definition 7.25. Let G be a group. Then the order Σ-invariant Σ1
ord(G) is the subset

of the set of non-trivial full archimedean orders on G defined as follows.
Let ≺ be a non-trivial full archimedean order on G. Then ≺ ∈ Σ1

ord(G) if and only
if for every antichain normal subgroup K ⩽ G that is maximal among antichain normal
subgroups, K≽ is coarsely connected.

Remark 7.26. As opposed to the definition of Σ1(G) in Definition 6.11, this definition of
Σ1

ord(G) is not independent of the choice of generating set, as we will see in Example 9.13.
Thus, we must ask that K≽ is coarsely connected instead of just connected.

On the other hand, we can state this definition even if G is not finitely generated.

To understand how this definition generalises Definition 6.11, we note that they align
if we restrict to orders induced by characters and then identify a character with the
order it induces on G.

Lemma 7.27. Let G be a finitely generated group and Φ: G→ R a character. Then

Φ ∈ Σ1(G) ⇐⇒ ≺Φ−1∈ Σ1
ord(G),

where ≺ is the standard order on R.

Proof. Take G to be ordered by ≺Φ−1 . Then kerΦ is the only maximal antichain sub-
group of G by Lemma 7.13. Hence ≺Φ−1∈ Σ1

ord(G) if and only if (kerΦ)≽ is coarsely
connected. The latter is equivalent to (kerΦ)≽ being connected for some finite generat-
ing set, which is the definition of Φ ∈ Σ1(G).

The other missing ingredient of Theorem 6.18 is the relative character sphere.
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Definition 7.28. Let G be a group, N a normal subgroup and π : G ↠ G/N the
projection map. Then define the relative order sphere as

Sord(G,N) := {≺π−1 | ≺ a non-trivial full archimedean order on G/N}.

Recall that in case G/N is abelian, Theorem 7.23 tells us that every full archimedean
order on G/N is induced by a map to R. Sord(G,N) contains all orders induced by
maps to G/N . As G/N is abelian, every order on G/N is induced by a map to R. That
is, Sord(G,N) contains precisely those orders induced by maps G → G/N → R, which
are by definition exactly the maps in S(G,N). So this is a generalisation of S(G,N) for
G/N abelian in the same sense as Σ1

ord(G) is for Σ1(G). If G/N is abelian, then the
identification of a character with its induced order is an isomorphism

S(G,N)→ Sord(G,N).

Note that if G itself is non-abelian, we do not get an identification of the character
sphere S(G) with the set of orders on G. This is because there might be orders on G
that are not induced by a map onto any abelian group, but every character does factor
through some abelian group.

The following is an often useful description of the relative order sphere.

Lemma 7.29. For a group G and N ⩽ G a normal subgroup, Sord(G,N) is the set

{≺ | ≺a non-trivial full archimedean order on G such that N is an antichain}.

Proof. By definition of ≺π−1 , for every order in Sord(G,N), N is an antichain.
Now let ≺ be a full order such that N is an antichain. Then it is induced by the

projection G↠ G/N and hence ≺ ∈ Sord(G,N).

In Lemma 7.27, we have seen that Σ1
ord(G) contains every order induced by a character

in Σ1(G). But there may still be full archimedean orders on G that are not induced
by any character. However, if G/N is abelian, the statements S(G,N) ⊆ Σ1(G) and
Sord(G,N) ⊆ Σ1

ord(G) are equivalent because in this case Sord(G,N) contains precisely
those orders induced by characters that factor through N and Lemma 7.27 provides that
those orders are contained in Σ1

ord(G).
We may use the new terminology to obtain a more concise formulation of Theo-

rem 7.24.

Theorem 7.30. Let G be a finitely generated group and N ⩽ G a normal subgroup such
that G/N is abelian. Then N is finitely generated if and only if Sord(G,N) ⊆ Σ1

ord(G).

Proof. For a full archimedean order ≺ on G, the normal subgroup N is an antichain
if and only if ≺ ∈ Sord(G,N). Furthermore, N≽ is coarsely connected if and only if
≺ ∈ Σ1

ord(G). In case G/N is abelian, N≽ is coarsely connected if and only if it is
connected as follows from Remark 6.13.

Applying these equivalences to the claim yields Theorem 7.24.
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8. Order Σ-invariants for nilpotent
quotients

Let G be a finitely generated group and N ⩽ G a normal subgroup. In Theorem 7.30, we
have established a connection between finite generatedness of N , the order Σ-invariant
Σ1

ord(G) and the relative order sphere Sord(G,N). However, we only know that the
theorem holds if G/N is abelian. It is not clear that it becomes false if we drop that as-
sumption. In this chapter, we prove Theorem 8.11, which is an analogue of Theorem 7.30
in the case where G/N is nilpotent. The primary tool we use is the transfer between
characters and full archimedean orders we have established in Chapter 7. We restrict to
nilpotent groups because for them, we can classify the full archimedean orders.

8.1. Classification of orders
Theorem 7.30 asks if Sord(G,N) ⊆ Σ1

ord(G). To have any chance of proving it in a more
general setting, we need to know what Sord(G,N) looks like. By definition, Sord(G,N)
is in 1-to-1 correspondence with the non-trivial full archimedean orders on G/N . As
we will focus on the case where G/N is nilpotent, our actual objective is to understand
orders on nilpotent groups. Furthermore, the torsion-elements of a nilpotent group form
a normal subgroup, so an order on G/N is induced by an order on G/N/T where T is
the torsion part of G/N .

As Theorem 7.30 requires G to be finitely generated and any order the theorem asks
about is full and archimedean, we allow ourselves to make these assumptions whenever
convenient. At the end of this section, we will prove Theorem 8.6. It provides a way to
construct all full archimedean orders on a nilpotent group G. Let us start by looking at
some examples.

Example 8.1.

1. Recall Example 7.20 constructing all full orders on finitely generated free-abelian
groups.

2. We construct all full orders on the Heisenberg group. Recall from Example 2.6
that the Heisenberg group has the presentation

H =
〈
a, b

∣∣ 1 = [a, [a, b]] = [b, [a, b]]
〉

and that any element g ∈ H can be written uniquely as g = aαbβ [a, b]γ for some
α, β, γ ∈ Z.

73



Any order on
Z2 = Hab = H/〈[a, b]〉

induces an order on H via the projection map. Even more, for any full order
on H, the projection modulo [a, b] is order-preserving. Thus, any full order is
lexicographic with respect to the exact sequence

〈[a, b]〉 ↪→ H ↠ Hab.

To obtain an archimedean order, at least one of the two factors has to be ordered
trivially by Remark 7.17.
So any full archimedean order on H is either induced by the projection H ↠ Hab
or by the inclusion 〈[a, b]〉 ↪→ H. Orders induced by the projection are in one-to-
one correspondence with orders on Z2. As 〈[a, b]〉 ∼= Z, there are two non-trivial
full orders on that subgroup. They induce the orders

aαbβ [a, b]γ � 1 ⇐⇒ α = β = 0 and γ > 0

and
aαbβ [a, b]γ � 1 ⇐⇒ α = β = 0 and γ < 0

on H.
Recall Example 2.6. There, we had a notion of relative height for paths in Cay(Z2),
as depicted in Figure 2.1.
The orders induced by the inclusion 〈[a, b]〉 ↪→ H make precise what we mean by
the relative height. Two paths have a relative height precisely if they have the same
endpoint in Z2. Analogously, with the two “special” orders above, two elements of
H are comparable if they project onto the same element of Z2 = H/〈[a, b]〉. That is
if they differ by some element of 〈[a, b]〉. The relative height of two such paths is the
difference in the powers of [a, b] in the normal forms of the corresponding elements
of H. In particular, which path is higher than the other is entirely determined by
whether that difference is positive or negative.

3. Now let G be the free-nilpotent group of class 2 and rank 3. That is

G =
〈
a, b, c

∣∣ [x, [y, z]] = 1 ∀x, y, z ∈ {a, b, c}
〉

It contains the Heisenberg group H as the subgroup generated by {a, b}. Any order
on G therefore restricts to an order on H. If ≺|H is induced by an order on Hab,
then ≺ is induced by an order on Gab. If ≺|H is one of the two archimedean orders
such that [a, b] and 1 are comparable, then ≺ is induced by one of the inclusions

Z2 = 〈[a, b], c〉ab ↪→ G

or
Z3 ∼= 〈[a, b], [a, c], [b, c]〉ab = G(1) ↪→ G.
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Recall that G(1) denotes the first term of the lower central series.
Up to the choice of embedding of H and hence isomorphism of G, these are all
archimedean orders.

For now, we omit the proof. We will review the example at the end of this section after
we give the characterisation of full archimedean orders in Theorem 8.6. That theorem
is the main tool to verify that the above examples are indeed correct.

The examples show that the orders are largely determined by orders on Gab. For
instance, in the third example, if there is more than a single generator comparable to
1, all of G(1) is necessarily trivially ordered. This leads to an intuition saying the more
elements of GrG(1) are comparable to 1, the fewer possibilities there are to extend an
order on GrG(1) to an order on G. With these ideas in mind, we aim to make precise
what orders on nilpotent groups look like. The case of nilpotent groups of class 1, that
is, abelian groups, has already been dealt with in Theorem 7.23.

Remark 8.2. Let G be a finitely generated free-abelian group and Φ: G → R. Then
kerΦ is also finitely generated free-abelian. And so is G/ kerΦ, as Φ maps any torsion
element of the quotient to some torsion element of R, but R is torsion-free.

Hence, kerΦ⊕G/ kerΦ is also finitely generated free-abelian. By counting dimensions,
we see that it is even isomorphic to G.

Take R to be ordered by the standard order. As Φ factors through G/ kerΦ, Φ induces
a total order on G/ kerΦ and the projection map then induces an order on G. This is
the same order that Φ induces on G.

Any isomorphism G ∼= kerΦ ⊕ G/ kerΦ produces a free-abelian generating set of G
from such sets for kerΦ and G/ kerΦ. That is, for any full archimedean order on G,
there are free generators such that

1. every generator is either positive or incomparable to 1,

2. and the positive cone is a subset of the subgroup spanned by the positive generators.

This is not true for arbitrary nilpotent groups. For example, in the Heisenberg group,
none of the generators may be positive, but their commutator is, as we have seen in
Example 8.1.

Let us now consider the case where G is a non-abelian nilpotent group. Any order on
the abelianisation Gab induces an order on G, and these orders we already understand
by Theorem 7.23. They are the ones such that G(1) is an antichain. For all other orders,
the following lemma restricts the order on G(1).

Lemma 8.3. Let G be a finitely generated nilpotent group carrying a full order and
g ∈ G≻, h ∈ G.

Then [g, h] Î g.

Proof. Let N = 〈〈g〉〉 ⩽ G be the normal subgroup generated by g and n the nilpotency
class of N . Note that [g, h] = g−1(h−1gh) ∈ N .
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We show that for 1⩽ i, every element of N (i) is infinitesimal with respect to g. We
know that this is true for i⩾n, where n is the nilpotency class of N , because then N (i)

is trivial and 1 Î g.
So let 1⩽ i < n and suppose that every element of N (i+1) is infinitesimal with respect

to g. N (i) is generated by elements of the form [f, g]. It is enough to show that these
generators are infinitesimal with respect to g, because then

([f1, g][f2, g])
k = [f1, g]

k[f2, g]
kc

for some c which is a product of commutators of powers of [f1, g] and [f2, g]. In particular,
c ∈ N (i+1). So

([f1, g][f2, g])
k = [f1, g]

k[f2, g]
kc ≺ g3

and hence [f1, g][f2, g] Î g3. As ≺ is full, this also means [f1, g][f2, g] Î g.
It remains to show that [f, g] Î g. We compute

g[f, g]−k = f−kgfkc � f−kfkc = c,

again for some c consisting of commutators involving [f, g] and thus c ∈ N (i+1) and in
particular c−1 ≺ g. Thus

[f, g]k ≺ c−1g ≺ g2

and hence [f, g] Î g.

Remark 8.4. In the following proof, we will do an induction on all nilpotent groups.
For a partially ordered set X admitting no infinite descending sequences, in order to
prove some statement about every element x ∈ X, it is enough to prove that statement
under the assumption that it is true for every y ∈ X that is smaller than x in the sense
of the order.

Definition 8.5. Let A,B be finitely generated nilpotent groups. For any i ∈ N,
A(i)/A(i+1) is a finitely generated abelian group. Denote the rank of its free part by
rkA(i)/A(i+1) and set rk(i)A := rkA(i)/A(i+1).

We say that A comes before B if and only if rk(i)A < rk(i)B for the largest i such that
these ranks are not equal. Unless all the ranks are equal, such a largest i must exist
since A being nilpotent means that rk(i)A = 0 for all but finitely many i, and the same
is true for B. So, in particular, the ranks differ for only finitely many i. This defines a
partial well-ordering on the class of finitely generated nilpotent groups.

We use the terminology comes before instead of is smaller here to avoid confusing
the order on a given nilpotent group with the order on the class of nilpotent groups we
defined above.

Theorem 8.6. Let G be a finitely generated partially ordered nilpotent group with a full
archimedean order ≺. Then there exists a normal subgroup H ⩽ G such that G/H is
torsion free and ≺ is induced by an order on G/H, which itself is induced by a total
order on the center Z(G/H).
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That is, we may obtain any full archimedean order on G from the standard order on
R via the following chain of maps.

R←↩ Zn ∼= Z(G/H) ↪→ G/H ↞ G

Proof. As the torsion elements of G form a normal antichain subgroup T , and any order
on G is induced by the projection G↠ G/T , we may assume without loss of generality
that G is torsion free.

We do an induction as outlined in Remark 8.4 by either proving the theorem directly,
or reducing it to the same theorem on another group that comes before G in the sense
of Definition 8.5.

Suppose first that Z(G) is totally ordered. If 1 ≺ g for some g /∈ Z(G), we may
choose some h ∈ G such that [g, h] ∈ Z(G)r 1. By Lemma 8.3, we get [g, h] Î g. Since
1 ≺ [g, h] or 1 ≺ [g, h]−1, this contradicts ≺ being archimedean. Thus G≻ ⊆ Z(G). That
is, ≺ is induced by the inclusion Z(G) ↪→ G. So, by letting H = {1}, we see that the
claim is true.

If Z(G) is not totally ordered, pick a maximal cyclic subgroup C ⩽ Z(G) that is an
antichain. As a subgroup of the center, C is automatically normal in G. Since ≺ is full,
it is induced by the projection G↠ G/C.

Let k be the largest number such that C ⩽ G(k). Then we have

rk(i)G/C =

{
rk(i)G if i 6= k

rk(i)G− 1 if i = k.

Note that rk(i)G/C ⩽ rk(i)G for any i and rk(k)G/C < rk(k)G. That is, G/C comes
before G in the sense of Definition 8.5. Hence by induction, we may assume that there
is some H ′ ⩽ G/C such that ≺ is induced by the projection G ↠ G/C ↠ (G/C)/H ′

and the order on (G/C)/H ′ is induced by a total order on its center.
By Lemma 7.12, ≺ is then induced by the projection G ↠ (G/C)

/
H ′ and setting H

to be the kernel of this projection finishes the proof.

Conversely, every choice of H ⩽ G such that G/H is torsion-free and ι : Z(G/H) ↪→ R
induces a unique order on G. Two choices H, ι and H ′, ι′ yield the same order if and
only if H = H ′ and ι = λι′ for some λ ∈ R+:

Proposition 8.7. Let G be a nilpotent group, H,H ′ ⩽ G normal subgroups and

ι : Z(G/H) ↪→ R, ι′ : Z(G/H ′) ↪→ R.

The maps ι, ι′ induce orders on the quotients G/H and G/H ′ which in turn induce orders
on G via the projection maps. Call these orders ≺ and ≺′. Then ≺ = ≺′ if and only if
H = H ′ and ι and ι′ are representatives of the same character in S(Z(G/H)).

Proof. It is immediate that the induced orders are equal if the inducing maps are.
Now suppose that ≺ = ≺′. Suppose that H = H ′ but ι and ι′ represent distinct

characters. Then there exists some g ∈ Z(G/H) such that ι(g) > 0 and ι′(g) < 0.
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Hence, any preimage of g under the projection G ↠ G/H is positive with respect to ≺
but negative with respect to ≺′. Thus, the two orders are not equal.

It remains to show that H = H ′. Suppose they are not equal. Furthermore, suppose
that H is not a subset of H ′, not losing generality if we allow swapping H and H ′. Let
h ∈ HrH ′. Then the normal subgroup 〈〈h〉〉 ⩽ G generated by h is a subgroup of H and
hence an antichain with respect to ≺. However, 〈〈h〉〉 projects onto a non-trivial normal
subgroup of G/H ′. As G/H ′ is nilpotent, its center has non-trivial intersection with
〈〈h〉〉. As Z(G/H ′) is totally ordered with respect to ≺′, 〈〈h〉〉 therefore contains some
positive element and, in particular, is not an antichain with respect to ≺′, showing that
≺ and ≺′ are not the same order.

Theorem 8.6 and Proposition 8.7 together provide a full characterisation of all full
archimedean orders on finitely generated nilpotent groups.

Remark 8.8. Note that if G is abelian, G/H = Z(G/H), so we get that ≺ is induced
by

R←↩ Zn ∼= Z(G/H) ∼= G/H ↞ G.

Hence, we recover that every full archimedean order on G is induced by a map to R.

To conclude the section now is a good time to revisit Example 8.1. The center of the
Heisenberg group is

Z(H) = 〈[a, b]〉 ∼= Z.

Let ≺ be an order on H. By Theorem 8.6, we know that there is P ⩽ H such that ≺
is induced by a total order on Z(H/P ). If P is trivial, then Z(H) is totally ordered by
one of the two total orders on Z. Spelling this out, we obtain one of the two orders of
the form

aαbβ [a, b]γ � 1 ⇐⇒ α = β = 0 and γ � 0.

If P is non-trivial it contains Z(H). For any full order ≺ on H that is induced by the
projection H ↠ H/P , Z(H) ⩽ P is an antichain. Hence ≺ is induced by an order on
H/Z(H) = Hab ∼= Z2.

The case of the free-nilpotent group of class 2 and rank 3 may be handled similarly
by looking at all possible intersections of P and Z(G).

8.2. Finitely generated kernels
In this section, we prove Theorem 8.11, which is the generalisation of Theorem 7.30 to
the case where G/N is nilpotent. As we know from Theorem 8.6 that all orders on
nilpotent groups are induced by the inclusion of the center into some quotient, let us
investigate how Sord(G,N) and Σ1

ord(G) behave when passing to subgroups.

Lemma 8.9. Let G be a group, H ⩽ G a subgroup and Φ: G ↠ Q a map onto some
group Q such that kerΦ ⩽ H.
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H G

Φ(H) Q

Figure 8.1.: H ↪→ G is order-inducing if all the other maps are.

Let ≺G ∈ Sord(G, kerΦ). It is induced by some order ≺Q on Q. Suppose that ≺Q is
induced by the inclusion Φ(H) ↪→ Q. The restriction ≺Q|Φ(H) induces via Φ−1 an order
≺H on H and ≺H ∈ Sord(H, kerΦ).

Then ≺G is induced by ≺H via the inclusion H ↪→ G. This statement is also visualized
in Figure 8.1.

Proof. Recall Lemma 7.6 stating that an order is characterised entirely by its positive
cone.

Let 1 ≺G g ∈ G. Then 1 ≺Q Φ(g) ∈ Q. So Φ(g) ∈ Φ(H). Hence there is some h ∈ H
such that Φ(h) = Φ(g). That is, gh−1 ∈ kerΦ ⩽ H, so g = (gh−1)h ∈ H.

Lemma 8.10. Let G be a group and Q a finitely generated nilpotent group. Let
Φ: G↠ Q be onto.

Take Q to be ordered by ≺Q and G ordered by ≺Φ−1

Q . Let P be the subgroup of Q
such that ≺Q is induced by a total order on Z(Q/P ) as provided by Theorem 8.6. The
projection Q ↠ Q/P is called π and the order on Q/P that induces ≺Q is ≺. Set
Ψ := π ◦ Φ and H := Ψ−1(Z(Q/P )). This situation is summed up in Figure 8.2.

Then
≺Ψ−1∈ Σ1

ord(G) ⇐⇒ ≺|Z(Q/P )
Ψ−1∈ Σ1

ord(H).

Proof. By Lemma 7.13, the only maximal antichain subgroup of H is kerΨ. Also, any
maximal antichain normal subgroup of G gets mapped by Ψ to a maximal antichain
normal subgroup of Q/P . Since Q/P is nilpotent, every nontrivial normal subgroup of
Q/P has nontrivial intersection with Z(Q/P ). Thus, the only normal antichain subgroup
of Q/P is the trivial group. Hence, the only maximal normal antichain subgroup of G
is kerΨ.

The set kerΨ≽ ⊆ G is the same set as kerΨ≽|H ⊆ H. Thus, if the full subgraph
spanned by kerΨ≽|H ⊆ Cay(H,S) is connected for some S ⊆ H, then the full subgraph
of Cay(G,S) spanned by kerΨ≽ is also connected. The other direction uses the same
argument after we note that we can always ask that

S ⊆ kerΨ≽ = kerΨ≽|H ⊆ H.

by Remark 6.9.

Finally, we are ready to prove the result we were aiming for.

Theorem 8.11. Let G be a finitely generated group, Q finitely generated nilpotent and
Φ: G↠ Q onto. The following are equivalent.
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H G

Q

Q/P

π−1(Z(Q/P ))

Z(Q/P )

Φ

π

Φ

π

Figure 8.2.: If we start with an ordered nilpotent group Q and a map Φ, we get induced
orders on all the groups in this diagram.

1. kerΦ is finitely generated

2. Sord(G, kerΦ) ⊆ Σ1
ord(G)

3. Sord(Z̄, kerΦ) ⊆ Σ1
ord(Z̄)

where Z̄ := Φ−1(Z(Q)).

Proof. (1)⇒ (2): Let ≺ ∈ Sord(G, kerΦ). By definition, ≺ is induced by a unique order
on Q. Theorem 8.6 tells us that there is a normal subgroup P ⩽ Q such that the order
on Q is induced by a total order on Z(Q/P ).

Let π be the projection map Q↠ Q/P and set

H := (π ◦ Φ)−1(Z(Q/P )) ⊆ G.

We know that
g � 1 ⇐⇒ Φ(g)P � 1 ∈ Z(Q/P ),

so ≺|H∈ Σ1
ord(H) implies ≺ ∈ Σ1

ord(G) by Lemma 8.10. Hence, it is enough to show that
≺|H∈ Σ1

ord(H).
(π ◦ Φ)|H : H ↠ Z(Q/P ) is a surjective map onto an abelian group. So by The-

orem 6.18, if its kernel is finitely generated, then ≺|H∈ Σ1
ord(H). By construction,

ker(π ◦ Φ) ⩽ H, so ker(π ◦ Φ) = ker (π ◦ Φ)|H .
Note that we may write ker(π ◦ Φ) as an extension

kerΦ ↪→ ker(π ◦ Φ) ↠ kerπ.

Using different names for the same groups, we obtain the extension

kerΦ ↪→ ker (π ◦ Φ)|H↠ P.

By assumption, kerΦ was finitely generated. As P is a subgroup of a finitely generated
nilpotent group and hence itself finitely generated, ker (π ◦ Φ)|H is also finitely generated.
Hence ≺|H∈ Σ1

ord(H) and ≺ ∈ Σ1
ord(G).

(2)⇒ (3): Let≺ ∈ Sord(Z̄, kerΦ). Then≺ is induced by an order on Z̄/ kerΦ ∼= Z(Q).
This order induces an order on Q, and that order induces an order ≺′ on G.
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≺′ is hence induced by the inclusion Z̄ ↪→ G by Lemma 8.9 and

≺′
|Z̄= ≺.

Thus if ≺′ ∈ Σ1
ord(G), then ≺ ∈ Σ1

ord(Z̄) by Lemma 8.10. As kerΦ is an antichain with
respect to ≺ and kerΦ ⩽ Z̄, the kernel is also an antichain with respect to ≺′. Hence

≺′ ∈ Sord(G, kerΦ) ⊆ Σ1
ord(G)

and therefore ≺ ∈ Σ1
ord(Z̄).

(3) ⇒ (1): Let H be a finitely generated subgroup of Z̄ containing kerΦ. If no
such H exists, then (kerΦ)≽ is not coarsely connected for any order on Z̄. That is no
order in Sord(Z̄, kerΦ) is contained in Σ1

ord(Z̄). As the former contains one element for
every order on Z̄/ kerΦ = Z(Q) and Z(Q) is a nontrivial torsion-free abelian group, the
relative order sphere is in, particular, non-empty. Hence if (3) is true, H must exist.

We have Sord(H, kerΦ) ⊆ Sord(Z̄, kerΦ) ⊆ Σ1
ord(Z̄). By Lemma 8.10, this also means

Sord(H, kerΦ) ⊆ Σ1
ord(H). As H/ kerΦ is a subgroup of Z(Q) and hence abelian, The-

orem 6.18 shows that kerΦ is finitely generated, finishing the proof.

To obtain the same formulation we used before, and as this is the essential part of the
result, let us restate just the equivalence of the first two points.

Corollary 8.12. Let G be a finitely generated group and N ⩽ G a normal subgroup such
that G/N is nilpotent. Then N is finitely generated if and only if Sord(G,N) ⊆ Σ1

ord(G).

81



9. Novikov homology for orders

For a character Φ on a group G, one may define the Novikov ring R̂G
Φ

. It is an extension
of the group ring that contains not only maps in RG with finite support but also admits
some infinite supports.

Definition 9.1. Let R be a ring, G a finitely generated group and Φ: G→ R a character
of G. Then the Novikov ring is

R̂G
Φ
:=

{
f ∈ RG

∣∣ | supp f ∩ Φ−1((−∞, k])| <∞ for every k ∈ R
}
.

This gives rise to an important characterisation of Σ1(G).

Theorem 9.2 (Sikorav [Sik87], [Sik17]). Let G be a finitely generated group and Φ a
character on G. Then Φ ∈ Σ1(G) if and only if H1(G, ẐG

Φ
) = 0.

In this chapter, we extend the established definition of the Novikov ring to be with
respect to a full archimedean order instead of only characters. The main result of this
chapter is that the above theorem transfers to the order-setting: We show in Theo-
rem 9.35 that for a full archimedean order ≺ on G, ≺ ∈ Σ1

ord(G) if and only if the
Novikov homology H1(G, ẐG

≺
) vanishes.

9.1. Novikov rings
We start by reviewing the Novikov ring, which was introduced in [Nov81] and has since
been studied in various settings. A comprehensive treatment may be found in [Sik17].
We will focus on how the multiplication in the Novikov ring works. In particular, we
will see how the multiplicative structure restricts possible extensions of the group ring.

Recall from Section 1.1 the definition of a group ring. As a set, the group ring
RG contains the finitely supported maps in RG. The restriction to finite supports is
important because, for example, if G = Z = 〈X〉, then the product

(

0∑
i=−∞

Xi) (

∞∑
i=0

Xi)

is not well-defined. The coefficient of X0 in the product would have to be the sum of
infinitely many summands, each of which equals 1. So RG is not a ring.

However, the Novikov ring is a ring that admits infinite supports. First note that G
acts on RG by multiplication and hence RG is an RG-module. Recall that this works
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with multiplication on either side and for brevity, we do not write left and right module
everywhere. RG being an RG-module is a different way of saying that the product of
two maps is already defined if at least one of them is finitely supported. To make this
idea precise, we introduce a topology on RG.

Take R to be endowed with the discrete topology and RG with the product topology.
Then, a sequence in R converges if and only if it eventually becomes stationary, and a
sequence in RG converges if and only if every coefficient converges individually. More
concretely, a series

∑∞
i=0 fi ∈ RG converges if for every g ∈ G there are only finitely

many i such that fi(g) 6= 0. In particular, the sum
∑

g∈G fgg interpreted as a sequence
of finite partial sums converges to the map g 7→ fg. That is, if G is countable and we fix
an enumeration gi of all elements of G, then

n∑
i=0

fgigi
(n→∞)−→

∞∑
i=0

fgigi =
∑
g∈G

fgg.

Thus, the notational overlap between limits of series
∑

g∈G fgg and elements of RG is
well-justified. As every partial sum

∑n
i=0 fgigi is an element of RG and every element

of RG is a limit of such partial sums, the group ring RG is a dense subset of RG.
Hence, we may naturally continue the multiplication on RG to a partial multiplication

on RG as follows. Every element of RG is a limit of some sequence in RG. For two such
sequences set

(lim an) (lim bn) := lim(anbn)

if the sequence of products (anbn) converges. Otherwise, we leave the left-hand side
undefined. To be specific, we get

(
∑
g∈G

agg) (
∑
g∈G

bgg) =
∑
g∈G

(
∑
h∈G

agh−1bh)g

if for each g ∈ G there are at most finitely many h ∈ G such that agh−1bh 6= 0 and an
undefined product otherwise.

In this sense, if a ∈ RG is a finite sum and hence an element of RG, we may multiply
a with any b ∈ RG. This turns RG into an RG-module. Note that for any g ∈ G, the
multiplication of g on RG is continuous. Hence, the multiplication by any element of
RG on RG is also continuous.

More generally, we say that a subset T ⊆ RG is an RG-module if for every a ∈ RG
and b ∈ T , the product ab is defined and ab ∈ T . Similarly, if for all c, d ∈ T the product
cd is defined and in T , then T is a ring.

The Novikov ring we defined in Definition 9.1 is a subset of RG that is a ring in this
sense. We will prove that it is a ring in Lemma 9.14, after we have extended the notion
of Novikov ring.

The following is a notation that we will use often in the context of Novikov rings.
Definition 9.3. For a =

∑
g∈G agg ∈ RG and a subset S ⊆ G we may restrict a to S

by zeroing all values outside of S. That is

a|S :=
∑
g∈S

agg ∈ RG.
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Note that the sum ranges over S instead of G.

Note that f|S∈ RG if and only if S ∩ supp f is finite. Thus a map f ∈ RG is in the
Novikov ring R̂G

Φ
if and only if f|φ−1((−∞,k])∈ RG for every k ∈ R. Also note that while

a character is an equivalence class of maps G→ R, the above condition does not depend
on the choice of representative, and hence R̂G

Φ
is well-defined for a character Φ.

9.2. Novikov rings for orders
Our goal in this chapter is to characterise Σ1

ord(G) via vanishing of some Novikov ho-
mology. We first introduce a new viewpoint that allows us to generalise the Novikov
ring such that it depends on an order instead of a character. If the order is induced by
a character, the two rings will be identical. We will see this generalisation in Defini-
tion 9.11.

The first thing to note is that whether a map f ∈ RG is an element of R̂G
Φ

is entirely
determined by supp f . Hence, there exists a set A of subsets of G such that f ∈ R̂G

Φ
if

and only if supp f ∈ A. To be explicit, by Definition 9.1, the set A contains all subsets
A ⊆ G such that A ∩Φ−1((−∞, k]) is finite for every k ∈ R. It is this property, that we
can decide membership in the Novikov ring by only looking at the support of f , that is
the defining property for our generalised Novikov ring.

Thus let us drop the explicit description of A and just consider any subset T ⊆ RG

with the following property: There exists some A ⊆ 2G such that f ∈ T if and only if
supp f ∈ A.

If we allow just any A, we have little control over the elements of T . To retain some
structure, we ask that T is at least an RG-module. Note that T being closed under
multiplication by R is not an issue, as multiplication by R does not change the support
of f ∈ RG. But for x, y ∈ RG we have supp(x + y) ⊆ suppx ∪ supp y. Similarly, if
x ∈ RG and g ∈ G, then supp(gx) = g suppx. This motivates the following definition.

Definition 9.4. Let X be a set and 2X the set of its subsets. We call I ⊆ 2X an ideal,
if for all Y, Z ∈ 2X the following hold:

1. ∅ ∈ I

2. If Y ∈ I and Z ⊆ Y , then Z ∈ I.

3. If Y ∈ I and Z ∈ I, then Y ∪ Z ∈ I.

I is left G-invariant if gY ∈ I for every Y ∈ I. Right invariance and bi-invariance are
defined analogously.

Remark 9.5. This is a well-established definition that appears in many contexts, many
of which have little to do with Novikov rings. See for example [BS12].

Some readers may be more familiar with filters. Filters and ideals are dual notions in
the following sense: A set I is an ideal if and only if its complement 2X r I is a filter.
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Remark 9.6. For any set S ⊆ 2X , there is a unique smallest ideal containing S. Starting
with S and adding the empty set and all subsets of elements of S and then adding finite
unions of such sets yields said ideal.

Similarly, if X is a group, then there exists a smallest X-invariant ideal containing S,
namely the smallest ideal containing XS for left invariance, SX for right invariance or
XSX for bi-invariance.

Finally, this allows us to extend the definition of the Novikov ring.

Definition 9.7. Let G be a group, A ⊆ 2G a left invariant ideal and R a ring. Then
define the Novikov module with respect to A to be

R̂G
A
:= {f ∈ RG | supp f ∈ A}.

Lemma 9.8. Let G be a group, R a ring and A ⊆ 2G a left-invariant ideal. Then R̂G
A

is a left RG-module.

Proof. Let x, y ∈ R̂G
A

and write x =
∑

g∈G xgg and similar for y. Further let r ∈ R
and g ∈ G. Then

g ∈ supp(x+ y) ⇐⇒ xg + yg 6= 0⇒ xg 6= 0 or yg 6= 0⇒ g ∈ suppx ∪ supp y.

Hence
suppx+ y ⊆ suppx ∪ supp y ∈ A

and so x+ y ∈ R̂G
A

.
Also, supp(rgx) = g suppx is a g-multiple of an element of A and hence itself in A by

left invariance.

Remark 9.9. If A is a right G-invariant ideal, then we can still define R̂G
A

exactly as
we did, and it will be a right RG-module. In general, R̂G

A
is not a ring.

Example 9.10.

1. For the trivial ideal A = {∅}, R̂G
A

is the trivial RG-module.

2. If A = 2G, then R̂G
A
= RG. In this case, R̂G

A
is not a ring.

3. If A is the set of finite subsets of G, then R̂G
A
= RG.

4. We have seen in Definition 9.1 that for every character Φ there exists some set
A ⊆ 2G such that R̂G

A
= R̂G

Φ
.

5. If G is a totally ordered group and A is the set of well-ordered subsets of G, then
R̂G

A
is the Mal’cev-Neumann ring MN≺(RG) we have seen in Section 3.3.

With this setup, we can define the Novikov ring with respect to an order.
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Definition 9.11. Let G be a group carrying a full archimedean order ≺ and let R be a
ring. Then the Novikov ring with respect to ≺ is

R̂G
≺
:= R̂G

A(≺)

where
A(≺) :=

{
A ⊆ G

∣∣ |S≼ ∩A| <∞ for every antichain S ⊆ A
}
.

Recall that we mainly define the Novikov ring to obtain a description of Σ1
ord(G). As

Σ1
ord(G) contains only full archimedean orders, it suffices for now to define the Novikov

ring for these orders. In Definition 10.27, we will see an even more general definition of
the Novikov ring that also allows non-archimedean full orders.

We check that the definitions of R̂G
Φ

and R̂G
≺

align if we identify characters with
the orders they induce.

Lemma 9.12. Let G be a group, R a ring, Φ: G → R a character and ≺ the order on
G induced by Φ. Then R̂G

≺
= R̂G

Φ
.

Proof. Let f ∈ R̂G
Φ

and S ⊆ G an antichain. As R is totally ordered and ≺ is indued
by Φ, the kernel kerΦ is the unique maximal antichain subset of G that contains 1 by
Lemma 7.13. So every antichain S ⊆ G may be written as S ⊆ g kerΦ. Again because
Φ induces ≺,

S≼ ⊆ (g kerΦ)≼ = Φ−1(Φ(g kerΦ≼)) = Φ−1((−∞,Φ(g)]).

By definition of R̂G
Φ

, f|Φ((−∞,Φ(g)]−1∈ RG. Hence supp f ∩ S≼ is finite and f ∈ R̂G
≺

.
Conversely, if f ∈ R̂G

≺
, let k ∈ R. We may pick g ∈ G such that Φ(g)⩾ k. For this g,

supp f ∩ Φ−1((−∞, k]) ⊆ supp f ∩ Φ−1((−∞,Φ(g)]) = supp f ∩ g kerΦ≼

is finite and hence f|Φ−1((−∞,k])∈ RG.

Let us look at an example of a Novikov ring that does not come from a character.
As we will want to look at nilpotent groups specifically and the distinction between
characters and orders does not become apparent for abelian groups, we examine the
simplest nilpotent group that is not abelian.

Example 9.13. Let H =
〈
a, b

∣∣ 1 = [a, [a, b]] = [b, [a, b]]
〉

be the Heisenberg group. We
have seen in Example 8.1 that there exists a unique full archimedean order on H such
that 1 ≺ [a, b].

Recall that any element of H can be uniquely written as aαbβ [a, b]γ and that such an
element is positive with respect to ≺ if and only if α = β = 0 and γ > 0. Also recall
that we use the convention [a, b] = a−1b−1ab.
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1

a−1

a−1b−1

b−1

Figure 9.1.: A path in the Cayley graph of the Heisenberg group with free-nilpotent
generators a, b. Arrows to the right correspond to the commutator [a, b].
Moving to the right along a horizontal arrow increases the order, and every
relation in the order is described by the transitive closure of these arrows.
The support of the red path is an element of the Novikov ring with respect
to an archimedean order induced by the inclusion of the center.

Consider the infinitely long word w = (a−1b−1ab)∞ in the generators a, b. We can
understand it as an infinite ray in the Cayley graph of H, which we see in Figure 9.1.
Take gi ∈ H to be the prefix of w of length i. The first few gi are

g0 = 1

g1 = a−1

g2 = a−1b−1

g3 = a−1b−1a = b−1[a, b]

g4 = a−1b−1ab = [a, b]

g5 = a−1b−1aba−1 = a−1[a, b]

g6 = a−1b−1aba−1b−1 = a−1b−1[a, b]

g7 = a−1b−1aba−1b−1a = b−1[a, b]2

g8 = a−1b−1aba−1b−1ab = [a, b]2

Then
x :=

∞∑
i=0

gi

is an element of ẐH
≺

. To see why this is true, let us reorder the summands of x:

x = (1 + a−1 + a−1b−1 + b−1[a, b])
∞∑
i=0

[a, b]i.
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That is, the support of x is the union of the four disjoint sets {1}≽, {a−1}≽, {a−1b−1}≽
and {b−1[a, b]}≽. Note that each set is isomorphic to N as an ordered set. Hence, an
antichain S ⊆ suppx is a choice of four points, one from each of these sets. S≼ ∩ suppx
is the union of four intervals of the form [0, k] in sets that are each isomorphic to N, so
S≼ ∩ suppx is finite. In Figure 9.1, this corresponds to cutting each horizontal line at
some point and retaining only the part of the line to the left of the cutting point.

Also note that the support of this particular sum is the union of four sets that each
are disconnected in the Cayley graph of H with respect to the generating set {a, b}. But
in each set, any two neighbouring points of the path are at distance at most 4, so it is
coarsely connected. Also, each of the four sets is connected in Cay(H, {a, b, [a, b]}).

On the other hand, the sequence ai[a, b]i might look at first sight as though it was
increasing because the exponent of [a, b] increases. But it is an infinite antichain as every
point of the sequence lies in its own translate of H≻, and hence the sum∑

i∈N
ai[a, b]i

is not an element of ẐH
≺

.

While we have been calling it the Novikov ring so far, an important fact we have yet
to check is that it is actually a ring.

Lemma 9.14. Let G be an ordered group and R a ring. Then R̂G
≺

is a ring.

Proof. Let a, b ∈ R̂G
≺

. To show that ab is defined, we need to show that for any g ∈ G,
agh−1bh = 0 for all but finitely many h ∈ G.

Let S ⊆ G be a maximal antichain subset. Then b|S≼ is finitely supported. So it is
enough to show that agh−1 = 0 for all but finitely many h ∈ Gr S≼ = S≻.

As ≺ is bi-invariant, gS−1 is also an antichain. If h ∈ S≻, then gh−1 ∈ (gS−1)≺. As
supp a ∩ (gS−1)≺ is finite, this means there are only finitely many h ∈ S≻ such that
agh−1 6= 0, so ab is defined.

To see that ab ∈ R̂G
≺

, let T ⊆ G be an antichain subset. We need to show that
(ab)|T≼ has finite support. We may assume without loss of generality that T is a maximal
antichain as this makes T≼ only larger.

For any g ∈ supp ab there exists at least some h such that agh−1bh 6= 0. Just as above,
in each case, both agh−1 and bh need to be non-zero, but this happens only finitely many
times.

Remark 9.15. We have seen before that if an order ≺ is induced by a character Φ, then
R̂G

≺
= R̂G

Φ
. Hence, R̂G

≺
being a ring shows that the classical Novikov ring R̂G

Φ
is

also a ring.

We conclude the section by giving two alternative descriptions of the Novikov ring.
A fact that is often important in the classical character setting is that Φ(supp f) has a

minimum for any f ∈ R̂G
Φ

. For example, it implies that if ≺ is a total order on G such
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• •

• • •

Figure 9.2.: A partially ordered set. Arrows point from smaller elements to larger ele-
ments. The elements on the bottom row form the minimum of this set.

that Φ is order-preserving, then the Mal’cev-Neumann ring MN≺(RG) contains R̂G
Φ

.
We want to make a similar statement for Novikov rings that depend on orders. Note
that there are partially ordered sets X such that some element x ∈ X admits no smaller
element, but still, not every y ∈ X is larger than x. See Figure 9.2 for an example.

Definition 9.16. Let G be an ordered group and S ⊆ G. Then the minimum of S is

minS := {s ∈ S | s ⊀ t ∀t ∈ S}.

Remark 9.17.

1. For any S ⊆ G, minS is an antichain.

2. In general, s ∈ S does not imply that s is larger than some element of minS. For
example, if S = G, and the order on G is non-trivial, then minS is empty.

3. For S, T ⊆ G and s ∈ (minS)≽, t ∈ (minT )≽,

st ∈ (minSminT )≽

This is a direct consequence of the fact that this remains true if we replace minS
and minT with arbitrary subsets of G.

This characterises the Novikov ring as follows.

Lemma 9.18. Let G be an ordered group, R a ring and f ∈ R̂G
≺

. Then

1. supp f ⊆ (min supp f)≽.

2. |min supp f | <∞.

Proof.

1. Let g ∈ supp f . As {g} is an antichain, there are only finitely many gi ∈ supp f
such that gi ≼ g. There is at least one g′ among the gi such that gi ⊀ g′ for every
i. This g′ is also minimal in supp f , as any element h ≺ g′ in particular satisfies
h ≺ g, so h is one of the gi. But g′ was minimal among those.
In total, g ≽ g′ ∈ min supp f , proving the claim.
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2. As min supp f is an antichain by Remark 9.17 and the minimum is contained in
supp f ,

|min supp f | = |min supp f ∩ supp f |⩽ |(min supp f)≼ ∩ supp f | <∞

by definition of R̂G
≺

.

By definition, the set A(≺) of admissible supports for elements of the Novikov ring is
a G-invariant ideal. We may use this fact to obtain a compact description of A(≺): It is
the G-invariant ideal generated by the elements of A that contain only positive elements.

Lemma 9.19. Let (G) be an ordered group and R a ring. Let A(≺) as in Definition 9.11.
Then A(≺) is the smallest G-invariant ideal in 2G containing A(≺) ∩ 2G

≻.

Proof. Checking that A(≺) is a G-invariant ideal is straightforward. So it is enough to
show that every A ∈ A(≺) may be written as a finite union

A =
⋃
g∈M

gAg

where M ⊆ G is a finite set and Ag ∈ A(≺) ∩ 2G
≻ .

For this, consider the finite antichain minA. Then

A ⊆
⋃

g∈minA
gG≻

by Lemma 9.18. And
A ∩ gG≻ ⊆ A ∈ A(≺)

so g−1(A∩ gG≻) ∈ A(≺) by G-invariance. Taking this set as Ag and M = minA finishes
the proof.

9.3. Units in the Novikov ring

While R̂G
≺

is a ring, it is usually not a division ring. But we can at least explicitly
describe the units in R̂G

≺
. Knowing the units will be necessary when we compute the

Novikov homology in Section 9.5. While this is well-established for the classical Novikov
ring, we adapt the proof to our generalisation.

Lemma 9.20. Let R be a ring, G an archimedean group.

1. For any x ∈ R̂G
≺

with suppx ⊆ G≻, 1− x is invertible in R̂G
≺

and

(1− x)−1 =

∞∑
i=0

xi.
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2. For any square matrix A ∈ (R̂G
≺
)n×n such that every entry of A is supported on

G≻, 1−A is invertible in (R̂G
≺
)n×n and

(1−A)−1 =
∞∑
i=0

Ai

Proof.

1. We first show that
∑∞

i=0 x
i converges and is hence a well-defined element in RG.

Suppose that there is a g ∈ G with g ∈ suppxi for infinitely many i. For those i,
Remark 9.17 tells us that g ≽ (min suppx)i. That is, for arbitrarily large numbers
i, there are g1, . . . , gi ∈ min suppx such that g is larger than or equal to the product
g1 . . . gi.
By Lemma 9.18, min suppx is finite. If i > n · |min supp f |, at least one h from
min suppx has to appear at least n times among the gj . Thus

g ≽ g1 . . . gi ≽ hn.

By picking for every i the element h ∈ min suppx that appears the most times
among the gj , we obtain an element h ∈ min suppx such that g ≽ hn for arbitrarily
large n. As g, h ∈ G≻, this contradicts G being archimedean. So g appears in only
finitely many summands, and hence the sum converges.

We proceed by showing that y :=
∑∞

i=0 x
i is actually an element of R̂G

≺
. Suppose

there was an antichain S ⊆ supp y such that |S≼ ∩ supp y| = ∞. Without loss of
generality, we extend S to a maximal antichain in G. As supp y ⊆

⋃
i∈N suppxi

and |S≼ ∩ suppxi| <∞, there are infinitely many j ∈ N such that S≼ ∩ suppxj is
non-empty, so contains some gj . Let us pick hj ∈ min suppxj such that gj ≽ hj .
Just as in the first part of the proof, there is some h ∈ min suppx such that hj � hj
for infinitely many j. In summary, we found some 1 ≺ h such that for each i ∈ N,
there is a gj ∈ supp y such that hi ≺ gj .
As the antichain S is maximal, it must contain at least one element inG≻∪{1}∪G≺.
In particular, there exists 1 ≺ s ∈ S≻, unless the order is trivial, in which case
there is nothing to show. Because ≺ is archimedean, hi � s for some i and hence
gj � hi ∈ S≻ for some, and indeed, almost all j. This contradicts gj ∈ S≼ and
hence the existence of S. Thus y ∈ R̂G

≺
.

To see that y is the inverse of 1− x, we compute

(1− x)
∞∑
i=0

xi =

∞∑
i=0

xi −
∞∑
i=0

xi+1 =

∞∑
i=0

xi −
∞∑
i=1

xi = x0 = 1.

2. The proof goes essentially the same as for (1). We note that as A has only finitely
many entries, the minimum of the union of their supports is still a finite set. Every
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entry of Ai is a finite sum of products of i factors that are entries of A. So, we may
use the same reasoning as above to show that any g ∈ G appears in the supports
of only finitely many entries among all Ai. Hence, the sum converges and, again
by the same argument as above, is an element of R̂G

≺
.

The exact same computation as in (1) now shows that

(1−A)
∞∑
i=0

Ai = 1.

Remark 9.21. Note that for x, y ∈ R̂G
≺

,

(xy)|min suppxy=x|min suppx · y|min supp y .

These restrictions are finitely supported and thus elements of RG. If x is a unit in R̂G
≺

,
then x|min suppx is therefore a unit in RG. Let y be the inverse of x|min suppx. Then xy
is of the form 1− x′ for some positively supported x′. Hence, Lemma 9.20 describes all
units in R̂G

≺
up to multiplication by units in RG.

If x ∈ R̂G
≺

is positively supported, then 1 − x is invertible in R̂G
≺

. As the multi-
plication on R̂G

≺
is a restriction of the partially defined multiplication on RG, 1− x is

invertible in every ring T ⩽RG such that
∑∞

i=0 x
i ∈ T .

The converse is also true: If 1 − x is a unit in T ⩽RG, then (1− x)−1 =
∑∞

i=0 x
i

and the infinite sum is an element of T . To see this, convince yourself that for no other
y ∈ RG, the product (1− x)y is defined and (1− x)y = 1.

Thus, to recognise units in the Novikov ring, f|min supp f plays an important role. We
may use this idea to understand elements in R̂G

≺
. An element f ∈ R̂G

≺
decomposes

into the part that is supported on min supp f and the rest R0 = f− f|min supp f . As
min supp f is an antichain, f|min supp f is an element of RG.

We may continue this idea as follows: R0 is again an element of R̂G
≺

and thus has a
part supported on its minimum and a smaller rest R1. In total, we get a decomposition
of f into levels, where each level set is the minimum of the support of some Ri or of f
itself. The restriction of f to any level set yields a finitely supported sum and, hence, an
element of RG. If the Novikov ring is with respect to a character Φ, that Φ is constant
on each level. Interpreting the value of a given level under Φ as the height of that level
provides an order on the levels such that the order embeds into the standard order on
N.

When passing to orders, we can generally no longer see the height of a level as the
image under a map. To recover a similar notion, we fix a positive element s ∈ G and
a maximal antichain normal subgroup N ⩽ G. Think of N as “cutting through G”,
dividing it into elements above N , below N and incomparable to N . By translating this
cut with our element s in either direction, we cut up G into slices of thickness s. This
idea is made precise in the following lemma and visualised in Figure 9.3.
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N Ns Ns2Ns−1

N0 N1 N2N−1N−2

Figure 9.3.: A maximal normal antichain subgroup N divides N≻ ∪N≼ into slices Ni.

Lemma 9.22. Let G be an ordered group with ≺ a full order, s ∈ G≻ non-infinitesimal
and N ⩽ G a maximal antichain normal subgroup. Suppose that G/N is totally ordered,
that is, that N is maximal antichains.

For i ∈ Z set
Ni := (Nsi)c≼ ∩ (Nsi+1)≼

where (Nsi)c≼ denotes the complement. Then G is the disjoint union of all the Ni for
i ∈ Z.

Proof. As ≺ is full, it is induced by the projection map π : G ↠ G/N . Note that
π(Nsi) = {π(s)i}, so g ∈ (Nsi)≼ is equivalent to π(g) ≼ π(s)i.

To see that the Ni are pairwise disjoint, let i < j ∈ Z. Then

g ∈ Ni ⇒ g ∈ (Nsi+1)≼ ⇒ π(g) ≼ π(s)i+1 ≼ π(s)j ⇒ g /∈ Nj

and vice-versa.
It remains to show that every g ∈ G is contained in some Ni. Note that as G/N is

totally ordered, G = N≼ ∪N≻.
We show that there is a minimal i such that g ∈ (Nsi)≼. Then for that i we have

g ∈ Ni−1. So let I be the set of i ∈ Z such that g ∈ (Nsi)≼. We first show that I is
non-empty. If g ∈ N≼, then 0 ∈ I. Otherwise

g ∈ N≻ ⇒ π(g) � 1⇒ g � 1.

So gs � s � 1. As ≺ is archimedean, this means that there is some i such that si � gs
and hence g ≺ si−1 ∈ N(si−1). That is, i− 1 ∈ I.

Now, if I contains only finitely many negative numbers, then it has a minimum.
Otherwise, π(g) ≺ π(s)i for infinitely many negative i and hence even for all i ∈ Z. But
then 1 ≺ π(s) Î (π(g))−1 contradicts s being non-infinitesimal. So I does indeed have
a minimum and g ∈ Nmin I−1.

Remark 9.23. We ask that G/N be totally ordered to make sure that every element
of G is above or below N . If this is not the case, Lemma 9.22 still provides a slicing of
every subgroup H for which H/N is totally ordered.

It is plausible that Lemma 9.22 with slightly different assumptions will give a similar
result. However, one has to be very careful to make sure that every element of G actually
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ends up in some slice, with the issue being that if f ≺ g � h, this tells us nothing at all
about the relation between f and h. They may be comparable or incomparable; in the
latter case, they may or may not be in the same N -coset.

The version of Lemma 9.22 stated here is enough for the proofs we present in the
following section.

9.4. Novikov homology
We have seen in Chapter 7 that if G is a group and N ⩽ G a normal subgroup such
that G/N is abelian, then a character Φ ∈ S(G,N) = S(G) can be identified with an
order ≺ ∈ Sord(G,N). Theorem 9.2 states that in this case Φ ∈ Σ1(G) if and only if
H1(G, ẐG

Φ
) = 0. As we know from Lemma 9.12 that the Novikov rings for Φ and ≺

coincide, we get the following result:

Corollary 9.24. Let G be a finitely generated group, N ⩽ G a normal subgroup such that
G/N is abelian and ≺ ∈ Sord(G,N). Then ≺ ∈ Σ1

ord(G) if and only if H1(G, ẐG
≺
) = 0.

This is a direct translation of Theorem 9.2 to the language of orders.
By Theorem 6.18, a normal subgroup N ⩽ G is finitely generated if and only if

S(G,N) ⊆ Σ1(G) as long as G/N is abelian. In Chapter 8, we replaced the assumption
that G/N is abelian with G/N nilpotent. Now, we do the same thing for Theorem 9.2.
For this, we first investigate how to compute the first homology of G with coefficients in
ẐG

≺
.

Let G be any finitely generated group. Recall the resolution C∗ provided by the pre-
sentation complex from Definition 1.11. We will use this concrete resolution to compute
H1(G, ẐG

≺
). In general, for any ZG-module M , we may see the kernel ker(M ⊗ZG ∂1)

as the space of paths without boundary points in the presentation complex, with M
providing an interpretation of what constitutes a path. In the case where M is the
Novikov ring, this means that we look at paths that may be potentially infinite, but if
they are, they have to be increasing in the order. Recall Example 9.13, where we have
seen an infinite path supported on Novikov coefficients. The path from the example has
a single boundary point in 1. If we concatenate another infinitely long path that ends in
1, this yields some element of ker ẐG

≺
⊗ZG ∂1 that is usually not already in ker ∂1. The

following lemma generalises this idea to provide a generating set of ker(ẐG
≺
⊗ZG ∂1).

Lemma 9.25. Let G be an archimedean group with some generating set S and 1 ≺ s ∈ S.
Denote by et for t ∈ S the set of free generators of (ẐG

≺
)S and consider the map

∂ : (ZG)S → ZG, et 7→ 1− t,

just as in Definition 1.11. We write

∂̂ := ẐG
≺
⊗ZG ∂.
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a

1

b−ea

eb

bec be′c

e′b

−e′a

Figure 9.4.: A presentation of the relation bca−1 = 1 as a sum of generators of the kernel
ker(ẐG

≺
⊗ ∂1) for the group G = 〈a, b, c, s | bca−1〉. All horizontal edges

have labels ges for varying g.

Let
e′t := et − (1− t)(1− s)−1es.

Then

1. ker ∂̂ is generated by {e′t | t ∈ S r s}.

2. For any cycle ∑
t∈S

λtet ∈ ker ∂

with coefficients λt ∈ ZG, only finitely many of which are non-zero, we have∑
t∈S

λtet =
∑
t∈S

λte
′
t ∈ ker ∂̂.

We can see an illustration of the second statement in Figure 9.4 for the cycle

1→ b→ a→ 1

in some group where the corresponding edges in the presentation complex exist.

Proof. We start with the second statement. Note that

e′s = es − (1− s)(1− s)−1es = 0.

Further note that

∂̂et = (ẐG
≺
⊗ZG ∂) (1⊗ et) = 1⊗ ∂et = ∂et,
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using the identification of C∗ with the subspace ZG⊗ZG C∗⩽ ẐG
≺
⊗ZG C∗ for the last

equality. For a cycle
∑

t∈S λtet ∈ ker ∂̂ we compute∑
t∈Srs

λte
′
t =

∑
t∈S

λte
′
t

=
∑
t∈S

λtet −
∑
t∈S

λt(1− t)(1− s)−1es

=
∑
t∈S

λtet − ∂(
∑
t∈S

λtet) (1− s)−1es

=
∑
t∈S

λtet

Since any element of (ẐG
≺
)S = ẐG

≺
⊗ZG (ZG)S can be written as

∑
t∈S λtet for some

λt ∈ ẐG
≺

, this shows that in particular every cycle can be written as a ẐG
≺

-linear
combination of the e′t.

It remains to show that e′t ∈ ker ∂̂ for every t ∈ S r s:

∂̂e′t = ∂̂et − (1− t)(1− s)−1∂̂es = (1− t)− (1− t)(1− s)−1(1− s) = 0.

It will be essential for us later on to see how the homology behaves when passing
to subgroups. More precisely: If H ⩽ G is a subgroup, what is the relation between
H1(G, ẐG

≺
) and H1(H, ẐH

≺|H
)? In general, not much can be said, with the issue being

that we change both the group and the coefficient ring. In Remark 9.30, we will see an
example where one of the homologies vanishes and the other does not. But at least there
is an embedding ẐH

≺|H
↪→ ẐG

≺
compatible with the embedding of the group rings.

Lemma 9.26. Let R be a ring, G an ordered group, H ⩽ G and x ∈ R̂G
≺

with
suppx ⊆ H. Then x ∈ R̂H

≺|H .

Proof. As x ∈ R̂G
≺

, Lemma 9.18 provides a finite set M such that

x =
∑
g∈M

x|gG≻ .

Since the sum is finite, it is enough to show that x|gG≻∈ R̂H
≺|H . As suppx ⊆ H, each

summand is supported on

gG≻ ∩H = min(gG≻ ∩H)H≻,

again using Lemma 9.18 for the equality, and to see that the minimum is finite. Hence
each support is a finite union of translates of H≻. The claim follows from the fact that
for each such translate hH≻, the restriction x|hH≻ is an element of R̂H

≺
.
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If G is ordered by an order induced by the inclusion of H, this means that all the
structure of (G,≺) is already contained in the ordered group H. This transfers to the
Novikov ring ẐG

≺
, which is a ZG-module generated by ẐH

≺
. So all of the additional

structure of the Novikov ring ẐG
≺

in comparison to the group ring ZG can already be
seen in ẐH

≺
. Let us make this notion precise.

Lemma 9.27. Let G be an ordered group and H ⩽ G a normal subgroup such that
the order on G is induced by the inclusion of H. Suppose that H≻ is closed under
conjugation with G. Let R be a ring. Then

R̂G
≺
= RG⊗RH R̂H

≺

as left RG-modules.

Proof. Let
s : G/H → G, gH 7→ g̃

be a set-theoretic section of the projection map G ↠ G/H. That is g̃H = gH ⊆ G for
every g ∈ G.

We may write any g ∈ G as g = g̃h for h = g̃−1g ∈ H. Thus any x ∈ R̂G
≺

may be
written as

x =
∑
g∈G

agg =
∑

gH∈G/H

∑
h∈H

ag̃hg̃h =
∑

gH∈G/H

g̃(
∑
h∈H

ag̃hh).

By Lemma 9.18, we know that suppx is a union of finitely many sets g̃G≻. Because ≺
is induced by the inclusion H ↪→ G, the positive cone G≻ is the closure of H≻ under
conjugation with G. As H≻ is already closed in this sense by assumption, this means
G≻ = H≻. Thus, for all but finitely many gH, the sum

∑
h∈H ag̃h must be zero. The

isomorphism we are looking for is

R̂G
≺
→ RG⊗RH R̂H

≺
, x =

∑
gH∈G/H

g̃(
∑
h∈H

ag̃hh) 7→
∑

gH∈G/H

(g̃ ⊗
∑
h∈H

ag̃hh).

Note that the element on the right-hand side is well-defined since the outer sum is finite
as we have seen above and supp(

∑
h∈H ag̃hh) ⊆ H. Hence, the sum is an element of

R̂H
≺

by Lemma 9.26.
The inverse of that isomorphism is

RG⊗RH R̂H
≺
→ R̂G

≺
, g ⊗ x 7→ gx.

Checking these are inverse maps of left RG-modules is straightforward.

Let us check what this means on the level of homology.

Corollary 9.28. Let G be an ordered group and H ⩽ G a subgroup such that the order
on G is induced by the inclusion of H. Suppose that H≻ is closed under conjugation
with G. Then H∗(G, ẐG

≺
) = H∗(H, ẐH

≺
).
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F2

〈a, b〉

F∞
〈(bc)−ia(bc)i〉

F2 × Z
〈a, b〉 × 〈c〉

H = F2

〈a, bc〉

Z
〈c〉

Z
〈bc〉

bc 7→ c

Figure 9.5.: A commuting diagram of order-preserving maps. Each copy of Z is ordered
either by the standard order or its opposite. The groups to the left are
ordered trivially, and the groups in the middle are ordered via their projec-
tions onto Z. The horizontal lines are exact.

Proof. Let F∗ be a free resolution of Z by ZG-modules. Note that ZG is a free ZH-
module. Hence the modules F∗ are also free as ZH-modules and F∗ is a free resolution
of Z by ZH-modules: The cartesian product of a free basis of F∗ as ZG-module times a
free basis of ZG as ZH-module is a free ZH-basis of F∗. We use Lemma 9.27 to compute

H∗(G, ẐG
≺
) = H∗(F∗ ⊗ZG ẐG

≺
)

= H∗(F∗ ⊗ZG ZG⊗ZH ẐH
≺
)

= H∗(F∗ ⊗ZH ẐH
≺
)

= H∗(H, ẐH
≺
).

Remark 9.29. If G is nilpotent and the order is full archimedean, the assumption that
H≻ is closed under conjugation with G is automatic: By Theorem 8.6, the order on G
is induced by some projection G ↠ G/N and the order on G/N is induced by a total
order on the center. Hence H contains the preimage of Z(G/N) under the projection
G ↠ G/N . As N is an antichain, the order on H is induced by the projection onto
H/(H ∩N). By Lemma 7.9, (G/N)≻ is the closure of (H/(H ∩N))≻ under conjugation
with elements of G/N . But (G/N)≻ is central in G/N and hence the two positive
cones are already equal. Thus for their preimages under the projection map, we also get
H≻ = G≻.

The same argument also holds if G itself is not necessarily nilpotent, but the order is
induced by the projection onto a nilpotent quotient.

Remark 9.30. Note that in Corollary 9.28, it is not enough that H is ordered by the
restriction of the order on G. The order on G really has to be induced by the inclusion
of H. Figure 9.5 shows an example where the inclusion of the subgroup is not order-
inducing: The direct product F2 × Z contains a normal subgroup that is isomorphic to
F2 such that the projection onto the Z-component restricts to a non-trivial map on the
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g

h

−s

s s

−s−s

s

p p′

N

x′ x− x′

Figure 9.6.: A path connecting g to h supported on N≽.

subgroup. We call this subgroup H to distinguish it from the left factor of F2 × Z. It
also plays the role of the subgroup H in Corollary 9.28.

As the projections F2 × Z ↠ Z and H ↠ Z are order-inducing, the inclusion H ↪→
F2 × Z is order-preserving. That is, the order on F2 × Z restricts to the order on H.
Note, however, that ≺ is not induced by the inclusion of H as not every positive element
is a conjugate of an element of H. The kernel of the projection F2 × Z ↠ Z is F2 and
hence finitely generated. However, the kernel of that projection’s restriction to H is
isomorphic to F∞ and, in particular, not finitely generated. We will see in Theorem 9.36
that this obstructs equal homologies.

9.5. Sikorav’s theorem for orders
Recall Theorem 9.2 stating that a character is in the Σ-invariant if and only if the
homology with coefficients in the Novikov ring vanishes. While this is a statement only
about characters, we now have notions of the Σ-invariant and the Novikov ring for orders
on G. So, it is natural to ask if Sikorav’s theorem still holds for orders. In this section,
more precisely in Theorem 9.35, we prove it for orders that are induced by maps onto
nilpotent groups.

We start by assuming vanishing homology and proving that ≺ ∈ Σ1
ord(G). Let us

first review the case where the order is induced by a character. The following proof is
an adapted version of the proof for Theorem 9.2 as communicated via [Kie20, Theorem
3.11], which is the analogous statement in the character-setting.

Theorem 9.31. Let (G,≺) be a finitely generated partially ordered group such that ≺ is
full, archimedean and non-trivial and such that there is some normal antichain subgroup
N such that G/N is abelian.

If H1(G, ẐG
≺
) = 0, then ≺ ∈ Σ1

ord(G).

Proof. All tensoring is over ZG.
The abelian group G/N contains a maximal normal antichain subgroup K ⩽ G/N .

As ≺ is a full order, it is induced by the projection G ↠ G/N/K. The kernel of that
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projection is a maximal antichain normal subgroup of G. As G/N/K is also abelian,
by replacing N with said kernel, we may assume without loss of generality that N ⩽ G
is already a maximal normal antichain subgroup. In particular, G/N admits no normal
antichain subgroups and is hence totally ordered by Theorem 8.6. Thus N is maximal
among all antichains and N≺ ∪N≽ = G.

In this proof, we need to show that N≻ is coarsely connected. There is some 1 ≺ s ∈ G
and a finite generating set S ⊆ G with s ∈ S. It suffices to show that the full subgraph
of Cay(G,S) spanned by N≽ is connected. That is, for every g, h ∈ N≽, there is a path
in Cay(G,S) connecting g to h supported on N≽.

Denote by (C∗, ∂) the presentation complex of some presentation using the generating
set S as in Definition 1.11. As Cay(G,S) is connected, there is at least some path p
connecting g to h. However, it need not be supported on N≽. Have a look at Figure 9.6.
We see the path p, the ray starting at h taking infinitely many edges labeled s, and the
ray ending in g, coming from edges labeled s. These three paths may be interpreted
as elements of ẐG

≺
⊗ C1, and their sum ξ is a cycle. As H1(G, ẐG

≺
) = 0, there is an

element x ∈ ẐG
≺
⊗ C2 with (ẐG

≺
⊗ ∂)x = ξ.

As ẐG
≺
⊗ C2 is a free ẐG

≺
-module generated by any free basis of C2, we can write

this x as x =
∑n

i=1 xiri where xi ∈ ẐG
≺

and ri are finitely many of the basis elements
of C2.

To avoid cluttering notation too much, let us fix one i and set y := xi. Also, we write
just ∂ instead of ẐG

≺
⊗ ∂.

We use slicing as in Lemma 9.22 to write y =
∑∞

j=0 y|Nj
. Then as Nj ⊆ (Nsj+1)≺

and Nsj+1 is an antichain, y|Nj
has finite support. Hence ∂ y|Nj

also has finite support.
Recall from Section 9.1 that multiplication by an element of ZG is continuous on ẐG

≺

and so in particular ∂ is continuous. That is

∂y =

∞∑
j=0

∂(y|Nj
).

Thus, the right-hand side is a well-defined sum, and therefore, any g ∈ G can only be
contained in the supports of finitely many ∂(y|Nj

). As supp ∂y∩N≺ is finite by definition
of the Novikov ring, this means that there is some n0 ∈ N such that

supp(
∞∑

j=n0+1

∂(y|Nj
))

is disjoint from N≺. Let

x′i = y′ :=

n0∑
j=0

y|Nj
∈ ZG

and
x′ :=

n∑
i=1

x′iri ∈ C2 ⊆ ẐG
≺
⊗ C2.
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Now by construction,
∂(x− x′) = ∂x− ∂x′ = ξ − ∂x′

and we have
supp(ξ − ∂x′) ∩N≺ = ∅.

Also, ξ − ∂x′ is a cycle, as

∂(ξ − ∂x′) = ∂∂(x− x′) = 0.

As x′ ∈ C2, we have that ∂x′ ∈ C1. That is, ∂x′ is finitely supported. The support
of ξ contains all but finitely many elements of the form gsi and hsi for positive i, so
supp(ξ − ∂x′) still contains all but finitely many.

Take i, j to be the largest numbers such that gsi−1, hsj−1 /∈ supp(ξ− ∂x′). As ξ− ∂x′
is a cycle, it contains a path p′ from gsi to hsj . Since p′ lies on the boundary of x− x′,
we get in particular supp p′ ⊆ N≽ by construction of x′.

The path from g to h on N≽ is then constructed as follows: Start at g, move up to
gsi along edges labeled s, follow the path p′ in ∂(x− x′) to hsj and go down to h along
edges labeled s.

Now we use the characterisation of orders on nilpotent groups from Theorem 8.6 to
generalise Theorem 9.31 to the case where G/N is any nilpotent group.

Lemma 9.32. Let G be group, H a subgroup and ≺H a full archimedean order on H
such that the following implication holds:

H1(H, ẐH
≺H

) = 0⇒ ≺H ∈ Σ1
ord(H).

Suppose that G is ordered by some order ≺G that is induced by the inclusion of H and
that admits a normal antichain subgroup N ⩽ G such that G/N is nilpotent. Further
suppose that H1(G, ẐG

≺G
) = 0. Then ≺G ∈ Σ1

ord(G).

Proof. As G/N is nilpotent, there exists an antichain normal subgroup K ⩽ G/N such
that the order on G/N is induced by the projection to (G/N)

/
K. Let N ′ be the

kernel of the projection G ↠ (G/N)
/
K. Then G/N ′ is also nilpotent and its order is

induced by the inclusion of H/N ′. We know by assumption that H1(G, ẐG
≺G

) = 0. By
Remark 9.29, we may apply Corollary 9.28, which tells us that H1(H, ẐH

≺H
) = 0 as

well. Thus ≺H ∈ Σ1
ord(H) by assumption and hence ≺G ∈ Σ1

ord(G) by Lemma 8.10.

Corollary 9.33. Let (G,≺) be a finitely generated partially ordered group such that ≺ is
full, archimedean and non-trivial and such that there is some normal antichain subgroup
N such that G/N is nilpotent.

If H1(G, ẐG
≺
) = 0, then ≺ ∈ Σ1

ord(G).

Proof. As ≺ is a full archimedean order, it is induced by the projection G ↠ G/N
and some full archimedean order on the finitely generated nilpotent group G/N . By
Theorem 8.6, there exists a normal subgroup K ⩽ G/N such that the order on G/N
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1
s

s t′

t

p

Ks

x

Figure 9.7.: While we do not know where the generators t and t′ are, s is known to
be positive and tst′ ends up in Ks. There is a path p connecting s to tst′
supported on (Ks)≽.

is induced by the inclusion of the center Z(G/N/K) ↪→ G/N/K. Let H ⩽ G be the
preimage of the center under the projections. Then the order on G is induced by the
inclusion of H.

As Z(G/N/K) is an abelian group, Theorem 9.2 tells us that H1(H, ẐH
≺
) = 0 implies

≺ ∈ Σ1
ord(H). The claim follows from Lemma 9.32.

This concludes the proof of the first direction of a generalised version of Theorem 9.2.
Now for the other direction.

Theorem 9.34. Let G be a finitely generated group, ≺ ∈ Σ1
ord(G) and 1 ≺ s ∈ G.

Suppose that there is a normal antichain subgroup K ⩽ G and a finite generating set
S ⊆ G with s ∈ S such that for every t ∈ S there is a t′ ∈ S−1 such that tst′ ∈ Ks.

Then H1(G, ẐG
≺
) = 0.

Proof. Fix a presentation G = 〈S | R〉 using the generating set S and construct C∗ as
in Definition 1.11.

Let et be the generators of C1. Then according to Lemma 9.25, ker ∂1 ⊗ ẐG
≺

is
generated by e′t := et − (1− t)(1− s)−1es for t ∈ S r s.

Let us, for now, fix some t ∈ S. We have s ∈ Ks, and by assumption, there is some
t′ ∈ S−1 such that tst′ ∈ Ks. Thus ≺ ∈ Σ1(G) provides a path p connecting s to tst′
with supp p ⊆ (Ks)≽. We can see this setup in Figure 9.7.

Extend p by one edge labeled t′−1 to obtain a path p′ from s to ts and write that path
as

p′ =
∑
u∈S

λueu =
∑
u∈S

eu ⊗ λu ∈ C1 ⊗ ẐG
≺
.

As p′ has finite length we even get λu ∈ ZG and by construction

suppλu ⊆ supp p ∪ {tst′} ⊆ (Ks)≽.
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Also, x := et − p′ − (1− t)es is a cycle as

∂x = ∂et − ∂p′ − (1− t)∂es
= (1− t)− (s− ts)− (1− t)(1− s)
= 0.

So there is ct ∈ C2 with ∂ct = x. At the same time, by Lemma 9.25, we have

x = e′t −
∑
u∈Srs

λue
′
u ∈ ker(∂ ⊗ ẐG

≺
).

The map e′t 7→ (∂ ⊗ ẐG
≺
)(ct) = e′t −

∑
u∈Srs λue

′
u is a map from the one-cycles to

the one-cycles. Writing this map as a matrix M , we see that M is the unit matrix plus
some matrix with entries λu, which are all supported on (Ks)≽.

As ≺ ∈ Σ1
ord(G) means that ≺ is in particular full, it is induced by the projection

G↠ G/K. As this projection maps Ks to a single point [s], we get Ks ⊆ G≻ and hence
suppλu ⊆ (Ks)≽ ⊆ G≻.

By Lemma 9.20, M is then invertible. In particular, it is onto, meaning that ∂⊗ ẐG
≺

is also onto the cycles. This finishes the proof.

Merging this with Corollary 9.33 yields the following equivalence.

Theorem 9.35. Let G be a finitely generated group carrying a full archimedean order ≺
that is induced by some map Φ: G↠ Q for some nilpotent group Q. Then the following
are equivalent.

1. ≺ ∈ Σ1
ord(G).

2. H1(G, ẐG
≺
) = 0.

Proof. The implication (2) ⇒ (1) is Corollary 9.33. For the other direction we use
Theorem 8.6 to obtain some P ⩽ Q such that ≺ is induced by the inclusion of the center
Z(Q/P ) ↪→ Q/P and some total order on Z(Q/P ). Every maximal antichain subgroup
of Q contains K ′ := π−1(P ), where π is the projection Q↠ Q/P . Hence every maximal
antichain subgroup of G contains K := Φ−1(K ′).

Let S be any finite generating set of G such that S = S−1 and such that there is at
least some positive s ∈ S. Then (π ◦ Φ)(s) ∈ Z(Q/P ) and hence for any t ∈ S we have
(π ◦ Φ)(tst−1s−1) = 1. That is tst−1s−1 ∈ K or equivalently, tst−1 ∈ Ks.

Applying Theorem 9.34 to this setup proves the claim.

Note that if Q is abelian, and we identify a character with the order it induces on G,
we recover Theorem 9.2.

We can compactly state the main results of the previous chapters as the following
equivalence.

Theorem 9.36. Let G be a finitely generated group and N ⩽ G a normal subgroup such
that G/N is nilpotent. Then the following are equivalent.
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1. N is finitely generated.

2. Sord(G,N) ⊆ Σ1
ord(G).

3. H1(G, ẐG
≺
) = 0 for every ≺ ∈ Sord(G,N).

Proof. The equivalence (1) ⇐⇒ (2) is Corollary 8.12. The equivalence (2) ⇐⇒ (3) is
Theorem 9.35 applied to every order in Sord(G,N).
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Part IV.

Algebraic fibrations
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10. Fibring of RFN groups
Recall Theorem 2.9 stating that a finitely generated group that is virtually RFRS admits
a subgroup mapping onto Z with finitely generated kernel if and only if the first `2-Betti
number of G vanishes. Further, recall that a group that is both RFRS and nilpotent is
abelian. On the other hand, Theorem 2.9 also holds for virtually nilpotent groups as we
will see in Lemma 10.9.

In this chapter, we follow the proof of Theorem 2.9 in [Kie20] to see how it translates
to the RFN setting. One crucial ingredient in that proof is the equivalence of finite
generatedness and vanishing Novikov homology in Theorem 9.36 in the case where G/N
is abelian. We now have generalised this equivalence to G/N nilpotent. A RFRS group
is, in particular, a residually finite group such that G/Gi is abelian for every i. In this
chapter, we replace these abelian quotients in the definition of RFRS with nilpotent
quotients to obtain a larger class of groups which we call RFN. It seems reasonable that
Theorem 2.9 will hold for RFN groups, as we know that at least in Theorem 9.36 we may
indeed replace the condition that some quotients are abelian with the weaker condition
that they are nilpotent.

Following Kielak’s proof yields a strategy for proving that fibring and vanishing of
first `2-Betti number are also equivalent for RFN groups. However, there are some loose
ends where it is unclear how the transition from RFRS to RFN works. We will point
these out when they come up. It will be the subject of future research to fill these gaps
and try to turn the strategy outlined in this chapter into a full proof.

10.1. RFRS and nilpotency
We start by defining RFN groups. They are the groups that we will study in this chapter.
So far, we have been extending concepts that exist for abelian groups to nilpotent groups.
In the same spirit, we now replace RFRS groups with RFN groups.

Definition 10.1. A group G is residually finite with nilpotent quotients or RFN, if there
exists a sequence of finite index normal subgroups Gi ⩽ G such that

G = G0⩾G1⩾G2⩾ . . .

and ⋂
i∈N

Gi = {1}

and for every i there exists some torsion-free nilpotent group Ai such that the projection
Gi ↠ Gi/Gi+1 factors through Ai.
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Gi

Fi

Hi

Ai

Ai ×Bi

Bi

Gi/Gi+1

Fi/Fi+1

Hi/Hi+1

Figure 10.1.: A commutative diagram of RFN groups. Fi is a residual chain for the free
product G ∗H. The projection Fi ↠ Fi/Fi+1 factors through the torsion-
free nilpotent group Ai ×Bi.

Remark 10.2. Let i ∈ N. Let n be the nipotency class of Ai and recall that we denote
the lower central series of Gi by Gi(n).

The group Q := Gi/Gi
(n) is nilpotent of class at most n and any quotient of Gi that

is nilpotent of class at most n factors through Q The set of torsion elements T ⊆ Q is
a normal subgroup. Hence, we may always ask that Ai is the kernel of the projection
Gi ↠ Q/T .

This is analogous to RFRS groups where we did the same construction with Q =
Gi/Gi

(1).

Remark 10.3. Every RFN group is torsion-free: Since Gi ↠ Gi/Gi+1 factors through
a torsion-free group, every torsion element of Gi is contained in Gi+1. Inductively, Gi+1

contains every torsion element of G0 = G. Hence, if G is not torsion-free, the intersection
of the Gi cannot be trivial.

The following provides a large number of RFN groups. This is analogous to [Ago08,
Corollary 2.3].

Proposition 10.4. The class of RFN groups contains

1. every RFRS group

2. and every torsion-free nilpotent group.

It is closed under the following operations:

3. taking subgroups,

4. taking free products,

5. taking direct products.
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Proof.

1. If Gi is a witnessing chain for the fact that G is RFRS, then every projection
Gi ↠ Gi/Gi+1 factors through the torsion-free abelian group Gfab

i , which is also
torsion-free nilpotent. Thus, Gi is also a witnessing chain for G RFN.

2. Every nilpotent group G is residually finite, and every quotient of a nilpotent group
is again nilpotent. Let Gi be a residual chain for G. For every i, Gi is torsion-free
and if n is the nilpotency class of Gi/Gi+1 then the projection Gi ↠ Gi/Gi+1

factors through Gi/Gi(n). So any residual chain of G is automatically a witnessing
chain for G RFN. As always, Gi(n) denotes the lower central series.

3. Let H ⩽G where G is RFN with witnessing chain Gi. Then Hi := H ∩ Gi is a
witnessing chain for H being RFN. To see this, first note that for h ∈ Hi, f ∈ H,
the conjugate f−1hf is in H because all factors are, and is in Gi because Gi is
normal. So Hi is normal in H.
Secondly, ∩i∈NHi⩽∩i∈NGi = {1}.
And the embedding Hi ↪→ Gi descends to an embedding

Hi/Hi+1 = Hi/(Gi+1 ∩Hi) ↪→ Gi/Gi+1.

If the projection Gi ↠ Gi/Gi+1 factors through the torsion-free nilpotent group
Ai, say via the map πi, then Hi ↠ Hi/Hi+1 factors through πi(Hi), which is a
subgroup of Ai and hence also torsion-free nilpotent.

4. If G and H are RFN with witnessing chains Gi and Hi, set

Fi := 〈Gi,Hi, [Gi−1,Hi−1]〉 ⩽ G ∗H.

Then Fi is a witnessing chain for G ∗H RFN, as⋂
i∈N

(Gi ∗Hi) = (
⋂
i∈N

Gi) ∗ (
⋂
i∈N

Hi) = {1}

and so ⋂
i∈N

[Gi−1,Hi−1] = {1}

as well, so the intersection of the Fi is trivial.
Also if Gi ↠ Gi/Gi+1 factors through Ai and Hi ↠ Hi/Hi+1 factors through Bi,
then Fi ↠ Fi/Fi+1 factors through Ai×Bi. See also Figure 10.1. If Ai and Bi are
torsion-free nilpotent then so is Ai ×Bi.

5. The proof is the same as for free products. Note that [Gi−1,Hi−1] is trivial in
G×H, so the witnessing chain for G×H is just Gi ×Hi.
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Every RFN group is residually finite and torsion-free. Let us provide a counterex-
ample to see that the converse is not true. Positive examples we have already seen in
Proposition 10.4.

Example 10.5. The Baumslag-Solitar group G = BS(1, 2) = 〈a, b | ba = ab2〉 is not
RFN. To see this, a simple computation shows that every group G(k) in the lower central
series contains the generator b. So if we suppose that Gi is a witness for G being RFN,
then G1 necessarily contains b. We claim that by induction, every Gi must contain b. So
suppose that b ∈ Gi. As Gi is finite index in G, there is some n ∈ N such that an ∈ Gi.
Again, a simple computation shows bn ∈ Gi(k) for every k. As Gi ↠ Gi/Gi+1 factors
through some nilpotent group Ni, this means bn ∈ Gi+1. Because Ni is also torsion-free,
we even get b ∈ Gi+1. But then the intersection of the Gi is non-trivial, contradicting
the assumption that a witnessing chain Gi for G being RFN exists.

The details about the lower central series of Baumslag Solitar groups can be found for
example in [BN20].

An important fact about RFRS groups is that they satisfy the Atiyah conjecture
([Kie20, Proposition 4.2]), so let us prove the same for RFN groups.

Lemma 10.6. Every RFN group G satisfies the Atiyah conjecture.

Proof. Corollary 2.7 from [Sch02] states that every residually torsion-free elementary
amenable group satisfies the Atiyah conjecture. As every virtually nilpotent group is
elementary amenable, it suffices to show that G is residually {torsion-free and virtually
nilpotent}. That is, there exists a chain Ki of normal subgroups of G such that ∩Ki =
{1} and G/Ki is torsion-free and virtually nilpotent.

Take Gi to be a witnessing chain of G being RFN. It comes with subgroups Ki⩽Gi+1

such that G/Ki is torsion free nilpotent. We claim that these Ki witness that G is
residually {torsion free and virtually nilpotent}.

The intersection of all Ki is trivial because every Ki is a subgroup of Gi and the Gi
have trivial intersection. Similarly, every Ki is a normal subgroup of G.
Ki is a chain because

Ki+1 = G
(mi+1)
i+1 ⩽G

(mi)
i+1 ⩽G

(mi)
i = Ki.

G/Ki is virtually nilpotent because it fits into the extension

Gi/Ki ↪→ G/Ki ↠ G/Gi.

Gi/Ki is nilpotent and G/Gi is finite.
It remains to show that G/Ki is torsion free. First note that G/K0 = G0/K0 is torsion

free by construction. For any i, we have the extension

Ki/Ki+1 ↪→ G/Ki+1 ↠ G/Ki.

Ki/Ki+1 is a subgroup of the torsion free group Gi+1/Ki+1 and hence itself torsion free.
G/Ki is torsion free by induction. So G/Ki+1 is torsion free as an extension of torsion
free groups.
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If RFN groups share so many properties with RFRS groups, the following question
seems natural.

Question 10.7. Let G be a finitely generated group that is virtually RFN. Is it true that
G is virtually fibred if and only if β21(G) = 0?

One direction is immediately true by the first part of the proof of [Kie20, Theorem
5.3], which we repeat here for convenience.

Lemma 10.8. If G is a group that is virtually RFN and virtually fibred, then β21(G) = 0.

Proof. Let H ⩽G be a finite index subgroup of G that is fibred. Let Φ: H ↠ Z be a
map with finitely generated kernel. Then we may write H as an extension

kerΦ ↪→ H ↠ Z.

As kerΦ is finitely generated and infinite, [Lüc02, Theorem 7.2(5)] tells us that β21(H)
vanishes. Thus β21(G) also vanishes by [Lüc02, Theorem 1.35(9)].

The other direction of Question 10.7 is true for RFRS groups by Theorem 2.9. It
is also true for nilpotent groups, direct products and free products, as we will see in
Lemma 10.9 and Lemma 10.10.

This covers many of our known examples from Proposition 10.4, notably omitting
subgroups, for which such a general statement cannot be made: They may or may not
fibre and may or may not have vanishing first `2-Betti number. Nevertheless, this gives
hope that the answer to Question 10.7 is positive for all RFN groups.

Lemma 10.9. Let G be a torsion-free nilpotent group. Then β21(G) = 0 and G fibres.

Proof. The commutator subgroup [G,G] is a subgroup of G and hence finitely generated.
Also, Gab = G/[G,G] is a finitely generated free-abelian group. Hence any projection

G↠ Gab ↠ Z

has finitely generated kernel and thus G fibres. As G is in particular RFN, Lemma 10.8
shows that β21(G) vanishes.

Lemma 10.10. Let G,H be finitely generated groups admitting maps onto Z, not nec-
essarily with finitely generated kernel. Then

1. β21(G×H) = 0 and G×H fibres, whereas

2. β21(G ∗H) > 0 and G ∗H does not fibre.

Proof. The statements about vanishing or non-vanishing of `2-Betti numbers are The-
orem 4.15 from [Kam19]. Note that as G and H project onto Z, they are infinite and
therefore have vanishing zeroth `2-Betti numbers.

In this proof, we see Z as an additive group. This corresponds with the notation for
characters as maps to the additive group R.

110



To see that G×H fibres let ϕ : G↠ Z and ψ : H ↠ Z. These induce a map

f : G×H ↠ Z, (g, h) 7→ ϕ(g) + ψ(h).

Then (g, h) ∈ ker f ⇐⇒ ϕ(g) = −ψ(h).
Let g0, h0 such that ϕ(g0) = ψ(h0) = −1. Further let A ⊆ G and B ⊆ H be finite

generating sets such that g0 ∈ A and h0 ∈ B. We claim that ker f is generated by

S = {(a, hφ(a)0 ) | a ∈ A} ∪ {(gψ(b)0 , b) | b ∈ B}.

It is a straightforward computation that these generators are elements of ker f . And if
(g, h) ∈ ker f , we may write g = a1a2 . . . an and h = b1b2 . . . bm for some ai ∈ A, bj ∈ B.
Now

(a1, h
φ(a1)
0 ) . . . (an, h

φ(an)
0 ) = (a1 . . . an, h

φ(a1...an)
0 ) = (g, h

φ(g)
0 ) ∈ 〈S〉

and simlarly, (gψ(h)0 , h) ∈ 〈S〉. But then

(g, h
φ(g)
0 )(g

ψ(h)
0 , h) = (g, h)(g

ψ(h)
0 , h

φ(g)
0 ) ∈ 〈S〉.

As (g, h) ∈ ker f and so ψ(h) = −ϕ(g),

(g
ψ(h)
0 , h

φ(g)
0 ) = (g0, h0

−1)ψ(g) ∈ 〈(g0, h−1
0 )〉 ⊆ 〈S〉

and so (g, h) ∈ 〈S〉, proving the claim.
It remains to show that the free product G ∗H does not fibre. Let f : G ∗H ↠ Z be

any surjective map. Then as any commutator in G ∗ H is in ker f , f factors through
Gfab ∗H where Gfab is the torsion-free part of the abelianisation Gab. Gfab is a finitely
generated free-abelian group. Restricting f to Gfab yields a map

Gfab ∼= Zn → Z.

We may choose free generators of Gfab such that at most one of these generators is not in
the kernel of f . This is by linear algebra, seeing Zn as a free Z-module. Thus f factors
through Z ∗H.

Using the same argument on the right factor, we get that f even factors through
Z ∗ Z ∼= F2. Any finite generating set of ker f ⩽G ∗H projects onto a finite generating
set of ker f ⩽F2. But F2 does not fibre by Theorem 2.9 using the fact from [Kam19,
Theorem 4.15] that β21(F2) > 0. Hence, a finite generating set of ker f does not exist,
finishing the proof.

10.2. Twisted group rings
We continue investigating Question 10.7. The only part we still have to answer is if
vanishing of β21(G) implies thatG is virtually fibred for every RFN groupG. We approach
this by translating the proof of the same statement for RFRS groups into the language
of orders we have established in the previous chapters.

111



Recall that we have seen that orders on nilpotent groups are always induced by the
inclusion of a subgroup, and the order on that subgroup is induced by the projection
onto some quotient G/N . This defines some subgroup H = Z(G/N)⩽G of the group
G that contains all the information necessary to reconstruct the given order.

The group ring RH is contained in RG, leading to the equality of RG-modules

RG = (RH)G/H.

However, this is not an equality of rings. In Lemma 9.27, we have seen that this transfers
to the Novikov rings, so R̂G

≺
= R̂H

≺
G/H as RG-modules but not as rings. Similarly,

R̂H
≺

= ̂(RN)H/N
≺

as RH-modules but not as rings. In this section, we tweak the
multiplication on the left-hand side of these equations such that they become ring equal-
ities. We do this by replacing group rings with twisted group rings and show that this
replacement extends to Novikov rings. This follows the setup in [Kie20], where we find
twisted Novikov rings for characters.

Definition 10.11. Let R be any ring. Let N ↪→ G↠ Q be an extension of groups with
a set-theoretic section s : Q→ G.

For every a, b ∈ RN and p, q ∈ Q we set

ap · bq :=
(
as(p)bs(q)s(pq)−1)pq.

Extending this RN -linearly to (RN)Q turns the latter into a ring, which we call a twisted
group ring.

Note that here we multiply a, s(p), b, s(q) and s(pq)−1 as elements of RG, and their
product ends up in the subset RN .

Remark 10.12. Note that the twisted group ring (RN)Q and the group ring for the
group Q with coefficients in RN are identical as abelian groups and even as RN -modules.
But they carry different ring multiplications. In fact, every section s defines a different
multiplication on (RN)Q. We will have to make sure that it is clear which multiplication
(RN)Q carries in every instance. If s is a group homomorphism, then the resulting
twisted group ring is (RN)Q with the usual group ring multiplication.

Remark 10.13. A much more general notion of twisted group rings exists, but the one
presented here covers all cases we will see.

Lemma 10.14. Let RG be a group ring and (RN)Q a twisted group ring induced by
some section s : Q→ G. Then

1. RG and (RN)Q are isomorphic as RN -modules and

2. the RN -module map
ϕ : (RN)Q→ RG, q 7→ s(q)

is an isomorphism of rings.

112



Proof. To see that ϕ is an isomorphism of RN -modules, it suffices to note that Q is a
free basis of the RN -module (RN)Q and s(Q) is a free basis of the RN -module RG.

Note that the inverse of ϕ is the map

ϕ−1 : RG→ (RN)Q, g 7→
(
gs(π(g))−1) π(g)

where π is the projection map G ↠ Q. To parse the notation, gπ(g)−1 ∈ N ⊆ RN is
the coefficient of π(g) ∈ Q, making (gs(π(g)−1)) π(g) an element of (RN)Q.

Now, we show that ϕ−1 is a ring isomorphism. For r, r′ ∈ R, g, h ∈ G,

ϕ−1(rg) · ϕ−1(r′h)

= rgs(π(g))−1π(g) · r′hs(π(h))−1π(h)

=
(
rgs(π(g))−1s(π(g))r′hs(π(h))−1s(π(h))s(π(g)π(h))−1) π(g)π(h)

= ϕ−1(rg r′h)

= ϕ−1(rr′ gh).

Remark 10.15. If T is any ring that is also an RN -module, then the multiplication on
(RN)Q extends to componentwise multiplication on T ⊗RN (RN)Q = TQ, turning TQ
into another ring, which we will also call a twisted group ring.

In Chapter 9, we have studied Novikov modules. And in Section 4.2 we have seen the
Linnell ring D(G). Both are extensions of the group ring. Let us see what happens if, in
their definitions, we allow the group ring to be twisted, starting with the Linnell ring.

The following is analogous to [Kie20, Proposition 2.23] and [Kie20, Lemma 2.22].

Lemma 10.16. Let N ↪→ G ↠ Q be an extension of groups such that G satisfies
the Atiyah conjecture. Take (QN)Q to be a twisted group ring isomorphic to QG and
consider the twisted group ring D(N)Q = D(N)⊗QN (QN)Q.

If D(N)Q satisfies the Ore condition with respect to D(N)Qr 0, then

D(G) = D(N)Q[D(N)Qr 0]−1.

If instead Q is finite, then
D(G) = D(N)Q.

Proof. Recall that D(G) is the division closure of QG inside U(G) := L(G)[S]−1 where
S is the set of non-zero-divisors in L(G). As L(N)⩽L(G), we have

D(N) = D(QN ↪→ U(N))⩽D(QN ↪→ U(G))⩽D(QG ↪→ U(G)) = D(G).

Thus we get inclusions

QG = (QN)Q ↪→ D(N)Q ↪→ D(G)
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and so D(G) = D(D(N)Q ↪→ D(G)). Recall from Definition 3.4 the universal property
of the Ore localisation stating that the (D(N)Qr0)-inverting inclusion D(N)Q ↪→ D(G)
extends uniquely to a map f : D(N)Q[D(N)Qr 0]−1 → D(G). This f is a map between
division rings, so its kernel is either {0} or the whole domain. But the latter cannot be
the case as we already know that f is injective on D(N)Q. Hence, f is an inclusion and
D(N)Q[D(N)Qr 0]−1⩽D(G).

As D(N)Q[D(N)Qr 0]−1 is a division ring containing QG,

D(QG ↪→ D(G)) ⩽ D(N)Q[D(N)Qr 0]−1.

But D(QG ↪→ D(G)) = D(G), finishing the proof.

The second statement is [Kie20, Lemma 2.22]. The proof is analogous to [Lüc02,
Lemma 10.59].

Remark 10.17. Note that by [Tam54], in Lemma 10.16 for D(N)Q to satisfy the Ore
condition with respect to D(N)Qr0, it is sufficient that Q is amenable and D(N)Q is a
domain. This is particularly the case if N satisfies the Atiyah conjecture and additionally
Q is solvable, or, even more specifically but also more relevant for us, nilpotent.

Now, let us investigate the Novikov ring for twisted group rings. If RG is a twisted
group ring with respect to two different multiplications · and ∗, then

supp(a · b) = supp(a ∗ b)

for every a, b ∈ RG such that one and then both products are defined. The proof is a
straightforward computation.

This is in particular true if · is the normal group ring multiplication. Thus for an ideal
A ⊆ 2G and a, b ∈ R̂G

A
we get

supp(a ∗ b) = supp(a · b) ∈ A,

allowing for the following definition.

Definition 10.18. Let RG be a twisted group ring with multiplication ∗ and A ⊆ 2G

an ideal. Then the RG-module R̂G
A

together with the multiplication

(
∑
g∈G

agg) ∗ (
∑
g∈G

bgg) :=
∑
g∈G

(
∑
h∈G

agg ∗ bhh)

is the twisted Novikov ring.

Remark 10.19. In particular, if G is an ordered group with an archimedean order and
N ⩽ G is an antichain normal subgroup, the Novikov ring R̂G

≺
and the twisted Novikov

ring ̂(RN)G/N
≺

are isomorphic as rings.
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10.3. Orders on nilpotent groups revisited
In the preceding chapters, our assumption has always been that all “interesting” orders
on a group G are full and archimedean. We have also seen the notion of irrational
characters, which for abelian groups is the same as injective characters. In the proof
of Theorem 2.9, irrational characters play a vital role. They allow seeing elements of
D(G) as elements of the Novikov ring. An important property used in that proof is that
irrational characters induce total orders on the abelianisation. But by Theorem 8.6, no
full archimedean total orders exist on non-abelian nilpotent groups. Thus, we must drop
the assumption that all orders are archimedean. In this section, we classify all full orders
on nilpotent groups.

Definition 10.20. Let G be a group. We denote the set of full orders on G by Tord(G).
The subset containing all orders such that N ⩽ G is an antichain normal subgroup is

the set of full orders relative to N , and we denote it by Tord(G,N).

Note that because the orders are full, we get Tord(G,N) = Tord(G/N) just as for
archimedean orders. The proof is the same as for Lemma 7.29.

In this section, we extend the classification of Sord(G) from Theorem 8.6 to Tord(G).
Recall Example 7.20 where we have seen that every full order ≺ on Zn is lexicographic
with respect to some extension N ↪→ Zn ↠ Q. If ≺ is properly lexicographic in the sense
that both Q and N carry a non-trivial order and, in particular, are non-trivial groups,
then ≺ is non-archimedean: Every element of N is infinitesimal with respect to every
positive element of Q.

Conversely, if one of Q and N is trivially ordered, then the other has to be archimedean
if ≺ is archimedean. Thus, every full order on Zn is either properly lexicographic or
archimedean.

In Example 8.1, we saw that every order on the Heisenberg group H is lexicographic
with respect to the exact sequence Z(H) ↪→ H ↠ Hab. Again, ≺ is archimedean if one
of Z(H) and Hab is trivially ordered and the other is archimedean.

In Theorem 10.24, we show that every order on a nilpotent group is either properly
lexicographic or archimedean. Even more, the theorem shows that we can construct
every ordered nilpotent group by starting with some archimedean nilpotent groups and
constructing lexicographic orders on extensions of these groups.

We start by showing that being properly lexicographic and being archimedean are
mutually exclusive.

Lemma 10.21. Let G be a nilpotent group and N ⩽ G a normal subgroup. Let
≺ ∈ Tord(G) be lexicographic with respect to the sequence N ↪→ G ↠ G/N . Then
h Î g for every h ∈ N and g ∈ G≻ rN .

Proof. Let h ∈ N and g ∈ G≻ r N . Let π : G ↠ G/N be the projection map. Then
π(h) = 1 and π(g) ∈ (G/N)≻ by definition of the lexicographic order. Therefore
π(h−1g) ∈ (G/N)≻ and hence

h−1g ∈ π−1((G/N)≻) ⊆ G≻
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or equivalently, h ≺ g.
As hk is also an element of N for every k, the same argument shows that hk ≺ g and

so h Î g.

Lemma 10.22. Let G be a group, ≺ a full order on G and N ⩽ G a normal subgroup
such that h Î g for every h ∈ N and g ∈ G≻ r N . Then there exists some order on
G/N such that ≺ is lexicographic with respect to the sequence N ↪→ G↠ G/N .

Proof. Let g ∈ GrN and h ∈ N . If g ∈ G≻, by assumption h−1 ≺ g and so hg ∈ G≻.
Similarly, g /∈ G≻ implies gh /∈ G≻ as gh /∈ N and if gh ∈ G≻ then h Î gh and hence
1 ≺ g.

This allows us to define an order on G/N by setting

(G/N)≻ := {π(g) | g ∈ G≻ rN}

where π : G↠ G/N is the projection map. The above argument shows that an element
of G/N is positive if and only if all of its preimages in G are positive, so (G/N)≻ satisfies
all the properties required for a positive cone by Lemma 7.6. In particular, (G/N)≻ is
closed under multiplication.

The order on G/N defined by (G/N)≻ induces an order ≺′ on G that is a suborder
of ≺. More precisely, if g, h ∈ G such that h−1g /∈ N , then g ≺ h ⇐⇒ g ≺′ h. That is,

G≻ = π−1((G/N)≻) ∪ N≻,

which is the definition of the lexicographic order.

Hence, if G is non-archimedean, there must be some positive infinitesimals. We show
that we may always locate one of those infinitesimals in the center of G.

Lemma 10.23. Let G be a finitely generated nilpotent group and ≺ ∈ Tord(G) non-
archimedean. Then there exists some {1} 6= N ⩽ Z(G) such that h Î g for every h ∈ N
and g ∈ G≻ rN .

Proof. If ≺|Z(G) is not a total order, then there exists some h ∈ Z(G) that is incompa-
rable to 1. Because ≺ is full, it is induced by the projection G ↠ G/〈h〉. Equivalently,
≺ is lexicographic with respect to the sequence 〈h〉 ↪→ G↠ G/〈h〉 where 〈h〉 is ordered
trivially. By Lemma 10.21, h is infinitesimal with respect to every g ∈ G≻ r 〈h〉.

Now take ≺ to be total on Z(G). We claim that there exists some h ∈ Z(G)≻ such
that no g ∈ Z(G) r 1 is infinitesimal with respect to h. Note that then the set of such
h together with their inverses forms a non-trivial subgroup N ⩽G: If h, h′ ∈ N≻ and
g ∈ Z(G) with g Î hh′, then without loss of generality, h′ ≺ h as ≺ is total and so
g Î hh′ ≺ h2 and hence g Î h, contradicting h ∈ N . The argument if one or both of
h, h′ are negative is similar.

Now to prove that some such h exists. Suppose to the contrary that h does not exist.
Then for every g ∈ Z(G) we find some g′ ∈ Z(G) such that g′ Î g. That is, there exist
sets of elements

g0 Î g1 Î · · · Î gk
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of arbitrary length k and gi 6= 1 for every i.
If g Î g′, then g and g′ cannot lie in the same cyclic subgroup of G as every full order

on Z is archimedean. So 〈g, g′〉 is a free-abelian subgroup of Z(G) of rank 2.
Similarly, if g Î g′ Î g′′, then every element of 〈g, g′〉 is infinitesimal with respect

to g′′, so g′′ /∈ 〈g, g′〉. Inductively, we can construct a free-abelian subgroup 〈g0, . . . gk〉
of G of rank k + 1 for arbitrary k ∈ N. Taking k to be the rank of Z(G) leads to a
contradiction.

Let N ⩽Z(G) be the subgroup from above and take g ∈ G≻ r N and h ∈ N . As
every subgroup of a nilpotent group has non-trivial intersection with the center, either
g ∈ Z(G), or there exists some g′ ∈ G such that 1 6= [g, g′] ∈ Z(G). If g ∈ Z(G), then
we already know that h Î g′.

Otherwise, by Lemma 8.3, [g, g′] Î g. As [g, g′] is not infinitesimal with respect to h,
there exists some k ∈ Z such that h ≺ [g, g′]k. Since [g, g′]k is infinitesimal with respect
to g, so is h.

We are now prepared to prove the following classification of full orders on nilpotent
groups.

Theorem 10.24. Let G be a nilpotent group and ≺ ∈ Tord(G).
Then there exists a normal subgroup N ⩽ G with N 6= G and an archimedean order
≺′ ∈ Tord(G/N) such that ≺ is lexicographic with respect to the sequence

(N,≺|N ) ↪→ G↠ (G/N,≺′).

Proof. If ≺ is archimedean, we take N = {1} and there is nothing to prove. Otherwise,
Lemma 10.23 provides an N0 ⩽ Z(G) such that every element of N0 is infinitesimal with
respect to every positive element of G rN0. By Lemma 10.22, ≺ is lexicographic with
respect to the sequence N0 ↪→ G↠ G/N0.

Let Q = G/N0. Using induction as in Definition 8.5, we may assume that the order on
Q is lexicographic with respect to some chain N1 ↪→ Q↠ Q/N1 and some archimedean
order on Q/N1.

Every element of N1 is infinitesimal with respect to every g ∈ Q≻rN1 by Lemma 10.21
and so is every element of N0. Hence ≺ is lexicographic with respect to

N ↪→ G↠ Q/N1

by Lemma 10.22, where N is the kernel of the projection G ↠ Q/N1, finishing the
proof.

In the above theorem, as N is itself nilpotent, we may apply the same theorem to
N . For a given group, we can do this only finitely many times before one of the factors
becomes trivial. Thus, repeated application of Theorem 10.24 decomposes G into several
archimedean factors such that we can reassemble G by doing stepwise extensions of these
factors and ordering the products lexicographically.
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Example 10.25. On Z2, for every non-archimedean full order ≺ ∈ Tord(G), there exists
some embedding of a subgroup that is isomorphic to Z such that ≺ is lexicographic with
respect to the extension Z ↪→ Z2 ↠ Z and both factors are non-trivially ordered.

On the Heisenberg group H, every non-trivial full order falls into exactly one of these
categories:

1. Orders induced by the projection onto the abelianisation Hab ∼= Z2,

2. orders induced by the inclusion of the center Z(H) ∼= Z,

3. and orders that are properly lexicographic with respect to the extension

Z(H) ↪→ H ↠ Hab.

10.4. Novikov rings for non-archimedean orders
The crucial property of irrational characters used in the proof of Theorem 2.9 is the
following: Let G be a finitely generated torsion-free group with abelianisation Gab. Then
for any field k, the Novikov ring k̂Gab

Φ
is a division ring for every irrational character

Φ on G.
In Lemma 9.20, we have seen that an element x of a Novikov ring R̂G

≺
is a unit if and

only if x|min suppx is a unit in RG. If R is a division ring and ≺ is a total archimedean
order, this condition is void, and thus every x 6= 0 is a unit in R̂G

≺
. In particular, this

is the case for orders induced by irrational characters on abelian groups. This provides
the following connection between the Linnell ring, the Ore localisation and the Novikov
ring:

Remark 10.26. If N ↪→ G↠ Q is an extension of groups and Q is abelian, then

D(G) = D(N)Q[D(N)Qr 0]−1 = D̂(N)Q
≺

for every total archimedean order ≺ on Q.
For the first equality recall Lemma 10.16. The second equality is a consequence of

[Kie20, Section 3.3]. In fact, we do not even explicitly require for this argument that Q
is abelian, but other groups do not admit total archimedean orders.

Now suppose that Q is nilpotent and non-abelian. Then D̂(N)Q
≺

will usually not
be a division ring as if ≺ is total, it is properly lexicographic by Theorem 10.24 and
hence cannot be archimedean by Remark 7.17. But in Section 3.3, we have defined the
Mal’cev-Neumann division ring, another extension of the group ring that depends on
an order on G and is indeed a division ring. We have also seen in Section 9.2 that it
shares many properties with the Novikov ring for orders. In particular, if ≺ is a total
archimedean order on G, then the Novikov ring and Mal’cev-Neumann ring are equal,
as we will see in Lemma 10.30. We use this idea to define a Novikov ring between the
two: For an order that is potentially non-archimedean but also not total.
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Definition 10.27. Let G be a group carrying a full order ≺ and R a ring. Fix some
possibly twisted multiplication on RG. Then the ≺-Novikov ring with R-coefficients is
the twisted Novikov ring

R̂G
≺
:= R̂G

A

where
A = {A ⊆ G | A is well-ordered with respect to ≺}.

Recall that for totally ordered sets, well-ordered means that every subset has a minimum.
In our setting of partial orders, we say that a set A is well-ordered if it is well-founded
and admits no infinite antichain subsets. A set is well-founded if every totally ordered
subset is well-ordered in the sense of total orders.

If N ⩽ G is an antichain normal subgroup, we denote the twisted Novikov ring with
D(N)-coefficients by

F≺(G,N) := ̂D(N)G/N
≺
.

Remark 10.28. A set S is well-founded if and only if every subset T ⊆ S admits some
t ∈ T such that t′ ⊀ t for every t′ ∈ T .

Thus, a set S is well-ordered as a partially ordered set if and only if every sequence
of pairwise distinct elements in S admits an ascending subsequence. This is equivalent
to no sequence of pairwise distinct elements in S being descending or an antichain.

By ascending sequences we always mean gi ∈ S for i ∈ N such that gi ≺ gi+1 and
similar for descending.

If ≺ is a full archimedean order, then we have two definitions for R̂G
≺

, namely Def-
inition 10.27 and Definition 9.11. The following lemma shows that the two definitions
are not in conflict.

Lemma 10.29. Let G be a group with a full archimedean order ≺ and R a ring Let
A ⊆ G be any subset.

Then A is well-ordered if and only if |S≼ ∩A| <∞ for every antichain S ⊆ A.

Proof. Assume that |S≼ ∩A| < ∞ for every antichain S ⊆ A. Then, in particular,
|S ∩A| < ∞ and hence A admits no infinite antichains. So, we only have to show that
A is well-founded. So let B ⊆ A be totally ordered and b ∈ B. Then {b} ⊆ A is an
antichain and hence

|{b}≼ ∩B|⩽ |{b}≼ ∩A| <∞.
Hence the totally ordered finite set {b}≼ ∩ B has a unique minimum b0. Let b′ ∈ B.
Then either b′ > b⩾ b0. Or b′⩽ b in which case b′ ∈ {b}≼ ∩ B and hence b0⩽ b′. Hence
b0 is also the minimum of B and thus A is well-founded.

Now assume that A is well-ordered and let S ⊆ A be an antichain. Suppose S≼∩A was
infinite. By Remark 10.28 there is an ascending sequence (ai)i∈N supported on S≼ ∩ A.
Assume without loss of generality that the set {ai+1ai

−1 | i ∈ N} is totally ordered. If
not, we may replace the sequence (ai) with a subsequence with this property. To do
this, note that the set {ai+1ai

−1} has a finite minimum. If for each minimal element m
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we keep only those ai where aiai−1
−1 � m, we obtain a sequence where aj+1aj

−1 � m
for every j which is an index of an element we kept. There are only finitely many m,
so at least one of those sequences must be infinite. Inductively, we can assume that the
remaining elements are well-ordered.

Let b := min{ai+1ai
−1}, which exists because A is well-ordered and is unique because

the set is totally ordered. Then by construction, ai⩽ a0b
i for every i ∈ N. Also note

that b is positive since ai+1 � ai. As ai ∈ S≼ and the set of ai is totally ordered, there
exists some s ∈ S such that ai < s for every i and hence

bi⩽ aia0
−1 < sa0

−1

contradicting ≺ being archimedean.

We show that for total orders, Definition 10.27 is a redefinition of the Mal’cev-
Neumann ring MN≺(RG).

Lemma 10.30. Let G be a totally ordered group and R a ring. Then MN≺(RG) = R̂G
≺

.

Proof. First note that a subset A ⊆ G is well-ordered as a totally ordered set if and
only if it is well-ordered in the sense of Definition 10.27. Recall that a map f : G → R
is an element of MN≺(RG) if and only if supp f is well-ordered. This is precisely the
definition of R̂G

≺
.

Thus, the Novikov ring we defined in Definition 10.27 generalises both the Novikov
ring for archimedean orders and the Mal’cev-Neumann ring.

An essential and well-known fact is that if D(N) is a division ring and ≺ ∈ Tord(G/N)
is a total order, then F≺(G,N) is a division ring. See for example [Kie20, Definition
2.29]. This is why we consider the Mal’cev-Neumann ring F≺(G,N) in the first place.

I am unaware of any sources where this fact is proven, so we include proof here. As we
have done for Novikov rings for archimedean orders in Lemma 9.20, we investigate what
units in the expanded Novikov rings look like. The proof and statement are essentially
analogous to the archimedean case, but things get a bit more complicated. We allow
ourselves to assume that our group is nilpotent as that will be the case we are interested
in. First, a lemma that we will need for the main proof.

Lemma 10.31. Let G be a nilpotent group, ≺ ∈ Tord(G), R a ring and x ∈ R̂G
≺

such
that suppx ⊆ G≻. Then ⋃

i∈N
suppxi

admits no descending sequence.

Proof. By Theorem 10.24, there exists a filtration of G by normal subgroups Hi ⩽ G
such that ≺|Hi

is lexicographic with respect to Hi−1 ↪→ Hi ↠ Hi/Hi−1 and H0 = {1}.
Because the orders are lexicographic, every element ofHi−1 is infinitesimal with repsect

to any positive element of Hi rHi−1 by Lemma 10.21.
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Suppose that (gk) is a descending sequence in
⋃
i∈N suppxi. We may write g0 as a

product of finitely many elements of suppx. Hence, there is some minimal n such that
one of the factors of g0 is in Hn. As gk ≺ g0 for k > 0, in particular, every gk can be
written as a product of finitely many factors in Hn ∩ suppx: gk can be written as a
product of factors in suppx. As these factors are all positive, if one factor g′ is in HN

for some N > n, then gk � g′ Ï g0.
By dropping some prefix of the sequence (gk), we can assume that every gk contains

at least one factor in Hn rHn−1.
Recall that ≺ is lexicographic with respect to Hn−1 ↪→ Hn ↠ Hn/Hn−1. Let [gk] be

the image of gk under the projection Hn ↠ Hn/Hn−1. Then [gk+1] ≼ [gk] for every k
as gk+1 ≺ gk means either [gk+1] ≺ [gk] or gk+1

−1gk ∈ Hn−1
≻ ⊆ Hn−1 by definition of

the lexicographic order. The group Hn/Hn−1 is archimedean, as if 1 ≺ g Î h for some
h ∈ Hn, then g ∈ Hn−1. We have already seen in the proof of Lemma 9.20 that then⋃
i∈NH

i
n admits no descending sequence. Hence, there is an infinite subset J ⊆ N such

that all [gj ] with j ∈ J are pairwise equal.
The sequence gjgmin J

−1 is a sequence in Hn−1, and it is descending because it is a
translate of a subsequence of (gk). Inductively, every Hi for i⩽n admits a descending
sequence. This is, in particular, true for H0. But H0 = {1}. This contradicts the
existence of the sequence (gk).

Proposition 10.32. Let G be a nilpotent group, ≺ ∈ Tord(G) and R a ring. Let x ∈ R̂G
≺

be such that suppx ⊆ G≻. Then 1− x is invertible in R̂G
≺

and (1− x)−1 =
∑∞

i=0 x
i.

Moreover, an element y ∈ R̂G
≺
r 0 is invertible if and only if y|min supp y is a unit in

RG.

Proof. We only need to show that
∑∞

i=0 x
i is a well-defined element of MN≺(RG) as

then
(1− x)

∞∑
i=0

xi =

∞∑
i=0

xi −
∞∑
i=0

xi+1 = 1.

So let g ∈ G. To see that the sum is well-defined, We need to show that g ∈ suppxi for
at most finitely many i. To the contrary, let us assume that g ∈ suppxi for infinitely
many i. Without loss of generality, no element of any suppxj is smaller than g and
also contained in infinitely many suppxi. If this is not the case, we replace g with some
smaller element. If after this, there is still some element smaller than g and the process
of replacing g does not terminate after finitely many steps, then we have constructed a
descending sequence in suppx. This contradicts the fact that since x ∈ R̂G

≺
, suppx is

well-ordered and thus admits no descending sequences by Remark 10.28.
For brevity, suppose that g ∈ suppx.
Then there are gi ∈ suppx and hi ∈ suppxi such that gihi = g for infinitely many i.
By Lemma 10.31, there is no descending sequence in the set of hi. Hence, there is no

ascending sequence in the set of gi. There is also no descending sequence in gi and no
infinite antichain in gi. Thus, the set of gi is finite.
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But then, the set of hi = gi
−1g is also finite and hence some h ∈ {hi} is contained in

infinitely many suppxi. As h = hi ≺ gihi = g, this contradicts the assumption that no
element smaller than g is contained in infinitely many suppxi.

It remains to show that
∑∞

i=0 x
i ∈ MN≺(RG). That is, that the support is well-

ordered. Suppose to the contrary that the support contained a descending sequence
(gi). As no suppxi contains a descending sequence and hence at most finitely many
gi, there exists a subsequence of (gi) and an ascending sequence of indices j such that
gi ∈ suppxj . But analogous to the proof of Lemma 9.20, this cannot happen.

So in, particular, let N ↪→ G ↠ Q be an extension of groups, D(N) a division ring,
Q nilpotent and ≺ a total order on Q. Then every x ∈ F≺(G,N) may be written
as x = x0g0(1 − x+) where {g0} = min suppx and x0 =x|min suppx g0

−1 ∈ D(G) and
suppx+ ⊆ G≻. Hence F≺(G,N) is a division ring.

10.5. Non-archimedean Novikov homology
Now, we have transferred most objects that appear in [Kie20] to the setting of RFN
groups. We have omitted two things so far: the topology on the character sphere and
the definition of irrational characters. This is because it is not clear to me yet what
precisely their analogues should be. In this section, we will make a leap of faith and
assume that such analogues exist.
Assumption 10.33. There is a topology on the space of full orders on G and a notion
of irrational order that are in some sense sufficiently nice.

Then, we outline the proof of Theorem 2.9 in [Kie20] to see how it might generalise
to RFN groups.

Throughout this section, we fix the following objects:
1. G is a RFN group with witnessing chain Gk.

2. For k ∈ N let G′
k ⩽ Gk+1 such that Gk/G′

k is torsion-free nilpotent. We also write
G′ = G′

0.
Recall Remark 10.2. We will assume that G′

k = Gk
(nk) where nk is the nilpotency

class of Gk/G′
k.

Note that the projection Gk ↠ Gk/Gk+1 factors not only through Gk
(nk) but

also through every subgroup of Gk(nk). In particular, it factors through Gk
(N)

for N ⩾nk. This allows us to additionally assume that the sequence (nk)k∈N is
non-decreasing. Hence

G′
k = Gk

(nk)⩾Gk+1
(nk+1) = G′

k+1.

3. For every k, Lemma 10.16 provides a twisted group ring structure on D(G′
k)Gk/G

′
k

such that it is isomorphic to D(G). We identify the two rings by fixing one such
isomorphism for every k. Whenever we speak about D(G′

k)Gk/G
′
k, we interpret it

as this twisted group ring.
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We start by elaborating on the meaning of “sufficiently nice” in Assumption 10.33. In
Remark 6.2, we have seen that the character sphere S(G) is a topological space. Note
that every character factors through the abelianisation of G. Hence S(G) = S(G,N)
if N is the kernel of the projection G ↠ Gab. The analogue of S(G) in our setting is
Tord(G,G

′), so we will assume that Tord(G,G
′) is a topological space as well.

There are several ways of defining such a topology. Whatever the topology, knowing
the structure of Tord(G,G

′) as a set by using the characterisation of orders on nilpotent
groups from Theorem 10.24 and Theorem 8.6 will be crucial. Similarly, we assume a
topology on all the Tord(Gk, Gk

′).
To define such a topology, a good start is to aks that it restricts to the topology on the

character sphere S(G). Further, the projection that sends an order that is lexicographic
with respect to the extension N ↪→ G ↠ Q to the order induced by Q should be
continuous. There is a unique minimal topology satisfying these two assumptions on
Tord(Z2), namely

Tord(Z2) = (S(Z2) ∪ {1})× (S(Z) ∪ {1})/ ∼

where (ϕ,ψ) ∼ (ϕ′, ψ′) if ϕ = ϕ′ and ϕ is irrational. To see this, recall that any full
order on Z2 is either induced by an irrational character or it is lexicographic with respect
to Z ↪→ Z2 ↠ Z. Every full order on Z is induced by a character. Further, recall that
S(Zn) ∪ {1} is an (n − 1)-sphere with an added isolated point for the trivial character.
Hence Tord(()Z2) is three copies of S1 glued at all irrational points. It has yet to be
determined if this construction is sufficient in general.

Remark 10.34. Note that we may restrict any order on Gk to an order on the subgroup
Gk+1. As G′

k⩾G′
k+1, an order in Tord(Gk, Gk

′) restricts to an order in Tord(Gk+1, Gk+1
′).

Thus, the restriction of orders induces a map Tord(Gk, Gk
′)→ Tord(Gk+1, Gk+1

′).
Suppose that ≺ ∈ Tord(Gk+1, Gk+1

′) is a restriction of some order ≺′ ∈ Tord(Gk, Gk
′).

Then this ≺′ is unique, as for any g ∈ Gk there exists some n such that gn ∈ Gk+1.
Since ≺′ is full we get

g ∈ Gk≻
′ ⇐⇒ gn ∈ Gk≻

′ ⇐⇒ gn ∈ Gk+1
≻.

Hence we get an embedding Tord(Gk, Gk
′) ↪→ Tord(Gk+1, Gk+1

′). We implicitly use this
embedding to see Tord(Gk, Gk

′) as a subspace of Tord(Gk+1, Gk+1
′).

As an additional requirement for our topology, let us assume that Tord(Gk, Gk
′) carries

the subspace topology with respect to Tord(Gk+1, Gk+1
′). Thus, we get a sequence of

topological spaces
Tord(G0, G0

′) ↪→ Tord(G1, G1
′) ↪→ . . .

where each map is a homeomorphism onto its image.

The other important definition will be that of an irrational order. Recall that a
character is irrational if it is injective on the abelianisation. Equivalently, a character is
irrational if the order it induces on the abelianisation is total. The important property
is that F≺(G,N) is a division ring if N is the kernel of the free abelianisation map and
≺ is induced by an irrational character. Thus, we will require at least that irrational
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orders are induced by total orders on G/G′. But maybe not all such orders should be
considered irrational. Whatever they are, let us denote the space of irrational orders on
G by T irr

ord(G).
We will require that all orders in Tord(G,G

′) are suborders of some irrational order.
This is justified by the observation that every order on G/G′ can be extended to a total
order:

Let ≺ ∈ Tord(G,G
′) = Tord(G/G

′). Recall that by Theorem 10.24 together with
Theorem 8.6, we may write G/G′ as a sequence of extensions. Each factor carries a total
archimedean or trivial order, and every extension carries the lexicographic order. By
replacing every trivial order with some total order, we can construct a total order ≺′ on
G/G′ such that ≺ is a suborder of ≺′.

As we did for the topology on Tord(G,G
′), we may analogously ask for a notion of

irrational orders on the Gk.
The following definitions will depend on the topology on Tord(G,G

′) and the definition
of T irr

ord(G). They are generalisations for the same notions in the RFRS setting where
Tord(G) = S(G) and T irr

ord(G) is the space of orders induced by irrational characters.

Definition 10.35.

1. A subset U ⊆ Tord(G,G
′) is rich if it is open and T irr

ord(G) ⊆ U .

2. A subset U ⊆ Tord(Gk, Gk
′) for k > 0 is rich, if Uo ∩ Tord(Gk−1, Gk−1

′) is rich as a
subset of Tord(Gk−1, Gk−1

′).
By Uo we denote the inner part of the closure of U in Tord(Gk, Gk

′).

Recall Lemma 10.16 stating that D(G) = D(G′)G/G′[S]−1 where S = D(G′)G/G′r0.
Let ≺ ∈ Tord(G,G

′) and ≺′ ∈ T irr
ord(G) such that ≺ is a suborder of ≺′. Then F≺′(G,G′)

is a division ring containing D(G′)G/G′. Thus F≺′(G,G′) even contains D(G) by the
universal localisation property.

The ring F≺′(G,G′) = ̂D(G′)G/G′
≺′

also contains Q̂G
≺
= ̂(QG′)G/G′

≺
via the em-

bedding of coefficients QG′ ↪→ D(G′). We also have to use the fact that ≺ is a suborder
of ≺′, and hence every set that is well-ordered with respect to ≺ is also well-ordered with
respect to ≺′. If x ∈ D(G), we may hence ask if x ∈ D(G) ∩ Q̂G

≺
⊆ F≺′(G,G′). In this

case, we simply write x ∈ Q̂G
≺

. Note that this statement is relative to some irrational
order ≺′. This observation leads to the following definition.

Definition 10.36. Let ≺ ∈ Tord(G,G
′)k and x ∈ D(Gk). Then x is representable with

respect to ≺ if x ∈ Q̂Gk
≺

for every ≺′ ∈ T irr
ord(Gk) such that ≺ is a suborder of ≺′.

For U ⊆ Tord(G,G
′), we denote by D(G,U) the set of elements of D(G) that are

representable for every ≺ ∈ U .

Remark 10.37. Note that the embedding D(G, {≺}) ↪→ D(G) is independent of the
choice of ≺′.

Thus
D(G, {≺}) = D(G) ∩ Q̂G

≺⩽F≺′(G,G′)
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well representablerich

representable

Top. on Tord(G,G
′)

T irr
ord(G)

Figure 10.2.: Dependencies between the definitions in this section.

is an intersection of subrings of F≺′(G,G′) and therefore itself a ring. Similarly,

D(G,U) =
⋂
≺∈U
D(G, {≺})

is a ring.

Definition 10.38. Let k ∈ N. We say that an element x ∈ D(G) is well repre-
sentable if there exists an n⩾ 0 and rich sets Ui ⊆ Tord(Gi, Gi

′) for every i⩾n such
that x ∈ D(Gi, Ui)G/Gi.

In Figure 10.2, we see a dependency graph for the definitions we just made. Note that,
in particular, the definition of well representable depends on the topology on Tord(G,G

′)
and the definition of T irr

ord(G).
Many statements and proofs in [Kie20] translate directly to the generalised definitions,

as long as our topology satisfies the right assumptions. This makes me reasonably
confident that the following statement is true. If G is RFRS, this is a simplified version
of [Kie20, Theorem 4.13].

Conjecture 10.39. There exist topologies on Tord(Gi, Gi
′) and notions of irrational

orders T irr
ord(Gi) such that every element of D(G) is well representable.

For G RFRS, the following theorem is very close to [Kie20, Theorem 5.2]. The proof
presented here is an adapted version of Kielak’s proof. We include this here to illustrate
that much is independent of whether G is RFRS or RFN and also not on the concrete
topology on Tord(G) or notion of irrationality.

Theorem 10.40. Assume that Conjecture 10.39 is true.
Let G be a finitely generated infinite RFN group such that β21(G) = 0. Let Gk be

a witnessing chain and C∗ a free resolution of Q by free QG-modules such that Ci is
finite-dimensional for i < 2.

Then there exists a k ∈ N and a rich set U ⊆ Tord(Gk, Gk
′) such that

H1(Q̂Gk
≺
⊗QG C∗) = 0

for every ≺ ∈ U .
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D(G)⊗ C ′
2 D(G)⊗ C1 D(G)⊗ C0

D(G)⊗ C2 D(G)⊗ C1 D(G)⊗ C0

D2 ⊕ E2 D1 ⊕ E1 D0 ⊕ E0

= =

M2 M1 M0

D(G)⊗ ∂′1 D(G)⊗ ∂0

D(G)⊗ ∂1 D(G)⊗ ∂0

0⊕ idD2
∼=E1 0⊕ idD1

∼=E0

Figure 10.3.: A commutative diagram of D(G)-vector spaces. Every row is exact. All
maps except for ∂′1 may be represented as finite matrices with entries in
D(G). Except for the Mi, these matrices even have entries in QG.

Proof. Figure 10.3 is an illustration of this proof. All tensoring is over QG.
First, we may replace C2 with some finite-dimensional submodule such that the se-

quence C2 → C1 → C0 → Q→ 0 is still exact. For notational convenience, let us denote
the original module by C ′

2 and the finite-dimensional one by C2. Similarly, ∂1 is actually
the restriction of the boundary map ∂′1 of the original sequence.

As β21(G) = 0, the sequence D(G) ⊗ C∗ is an exact sequence of D(G)-vector spaces.
For i ∈ {−1, 0, 1}, let Di = D(G)⊗ ker ∂i and Ei a D(G)-vector space such that

Di ⊕ Ei = D(G)⊗QG Ci.

Then
(D(G)⊗ ∂i)Di = 0

and (D(G)⊗ ∂i)|Ei
is an isomorphism onto Di−1.

That is, up to change of basis, D(G)⊗∂i = 0⊕ id. Let Mi ∈ GL(D(G)) be the matrix
realising this change of basis. Or, put differently,

D(G)⊗ ∂i =Mi ◦ (0⊕ id) ◦Mi+1
−1.

The entries of the Mi and their inverses are elements of D(G). By Conjecture 10.39
they are well representable. Thus for each such entry x, there exists some n and rich
sets Ui for i⩾n such that x ∈ D(Gi, Ui). As the matrices Mi and their inverses have
in total only finitely many entries, we may take k to be the maximum of the n and U
the intersection of the Uk. If we know that the intersection of finitely many rich sets is
again rich, then this U is a rich set. For RFRS groups, this is [Kie20, Lemma 4.4], and
the proof for RFN groups is exactly the same.

Now the Mi and their inverses are matrices with entries in D(Gk, U). Let ≺ be an
order in U . The entries of the Mi are then also elements of Q̂G

≺
. Hence, if we replace

every D(G) ⊗ Ci in Figure 10.3 by Q̂G
≺
⊗ Ci and Di, Ei by free Q̂G

≺
-modules of the
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same dimension, we can still make sense of all the maps in the diagram, and the diagram
still commutes. The bottom row is still exact, and the Mi are still isomorphisms. Thus,
the middle row is also exact, proving

H1(Q̂G
≺
⊗ C∗) = 0.

This concludes a major step in proving that G is virtually fibred. To see what obstacles
remain, we outline how Kielak’s argument in case G is RFRS continues from here:

Take k and U as in Theorem 10.40. Recall that in this setting, U will be a set of
characters on Gk. Show that every rich set - and hence in particular U - contains a rich
subset U ′ such that Φ ∈ U ′ ⇐⇒ −Φ ∈ U ′. Then use richness to show that U ′ contains
some character Φ with image isomorphic to Z. By construction of U , H1(Gk, Q̂Gk

Φ
) = 0

and thus H1(Gk, Q̂Gk
−Φ

) = 0 as well. Theorem 9.2 states that then kerΦ is finitely
generated. Hence Gk fibres. As Gk is a finite index subgroup of G the latter fibres
virtually. In fact, the version of Theorem 9.2 we stated here is for ẐG

Φ
, but the theorem

holds analogously for Q̂G
Φ

.

It is plausible that these arguments apply analogously to RFN groups. The critical
steps are Conjecture 10.39 and Theorem 9.2. We have shown in Theorem 9.36 that
Theorem 9.2 holds analogously for full archimedean orders on G.

A crucial point will be to find the correct notion of rich set as this dictates what
assumptions we may make about the elements of U . For the above proof to work for
RFN groups, we must either ensure that U contains enough archimedean orders. Or, we
will need an even more general version of Theorem 9.36 that also works with Novikov
rings for non-archimedean orders. This would provide a positive answer to Question 10.7
for all RFN groups:

Conjecture 10.41. Let G be a finitely generated group that is virtually RFN, and
suppose that β21(G) = 0. Then G is virtually fibred.
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Part V.

Appendix
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A. Noncomputability and the axiom of
choice

In Chapter 5, we have discussed the use of the noncomputable environment in Lean.
In our code, we tried to avoid it if possible. This makes all our definitions construc-
tive, allowing us to actually inspect the objects we defined. On the other hand, using
noncomputable is warranted whenever it simplifies things. In this chapter, we spend
some thought on what noncomputable means for the natural language interpretation of
the Lean code.

Consider the following two definitions.

Definition A.1. A nonempty set is a set S such that there exists an s ∈ S.

Definition A.2. A nonempty set is a pair (S, s) of a set S and an element s such that
s ∈ S. Two pairs (S, s) and (T, t) are equivalent if S = T .

At first glance, the difference between Definition A.1 and Definition A.2 up to equiva-
lence seems moot. However, in a language as precise as Lean, we have to choose between
these two options when making a definition. So, it is worth investigating what precisely
the differences are.

Those definitions in Lean might look something like

class nonempty_set (S : Type*) [Set S] := (nonempty : ∃(s : S), s ∈ S)

and

class nonempty_set' (S : Type*) [Set S] := (s : S; hs: s ∈ S)

leaving out the equivalence in the second definition. The fact that neither definition
would really be useful most of the time is beside the point here. In Chapter 5, we have
seen that the same principle applies to more general and more sensible settings.

Let us denote the category of objects that match Definition A.1 by Set and the
category of objects that match Definition A.2 by Set∗. In the second case, we really
mean the objects, not their equivalence classes.

In either category, the morphisms are normal maps between sets. Note that even
though sets in Set∗ have a distinguished point, we do not require that maps send the
distinguished point of the domain to the distinguished point in the codomain. Every
map of sets is a map in Set∗. To make our question what the difference between the
two definitions is precise, we ask if Set and Set∗ are equivalent categories.
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Proposition A.3. The equivalence of the categories Set and Set∗ is equivalent to the
axiom of choice.

The formulation of the axiom of choice that we use here is the following one:

Axiom A.4. Let A be a set of nonempty sets. Here, we mean nonempty in the sense
that they are not equal to the empty set. Then there exists a map

f : A →
⋃
A∈A

A

such that f(A) ∈ A for every A ∈ A.

An equivalence of categories is a pair of adjoint functors

F : Set→ Set∗, G : Set∗ → Set

that are both full and faithful. That is for every A,A′ ∈ Set and B ∈ Set∗,

HomSet(A,G(B)) = HomSet∗(F (A), B),

and the map
HomSet(A,A

′)→ HomSet∗(F (A), F (A
′))

induced by F is a natural bijection and analogously for G.
Let us now prove Proposition A.3. The condition that the hom-sets are isomorphic

means that on the level of objects, A and F (A) have to be isomorphic as sets. Thus the
functor F maps every set A to a pair (A, aA). When A is a set of sets, we may apply F
to the subcategory of Set containing all sets in A. This produces a map

f : A →
⋃
A∈A

A, A 7→ aA

as required by the axiom of choice.
Conversely, any such f may be turned into a functor F by setting F (A) = (A, f(A)).

This functor is adjoint to the forgetful functor

Set∗ → Set, (S, s) 7→ S.

Hence, the axiom of choice provides an equivalence of categories.
We interpret the equivalence of the categories Set and Set∗ as Definition A.1 and

Definition A.2 defining essentially the same thing. In Lean, the noncomputable envi-
ronment may be seen as assuming the axiom of choice. Indeed, the two Lean definitions
above can be proven equivalent in Lean if we assume noncomputability. But Defini-
tion A.2 has the added benefit that we do not need noncomputability in case it is easy
to provide an actual element of each set. This covers every case where existence is proved
constructively. Only if no constructive proof exists or none can be provided, we need to
transfer to a noncomputable environment to obtain Definition A.1 from Definition A.2.

It is a nice bonus to see that most of our theory is independent of the axiom of choice.
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B. Lean code for the Ore localisation
/- File: OreSet.lean -/

import Mathlib.Algebra.Ring.Regular
import Mathlib.GroupTheory.Submonoid.Basic

namespace OreLocalization

section Monoid

class OreSet {R : Type*} [Monoid R] (S : Submonoid R) where
ore_left_cancel

: ∀ (r₁ r₂ : R) (s : S), ↑s * r₁ = s * r₂ → ∃ s' : S, r₁ * s' = r₂ * s'
oreNum : R → S → R
oreDenom : R → S → S
ore_eq : ∀ (r : R) (s : S), r * oreDenom r s = s * oreNum r s

variable {R : Type*} [Monoid R] {S : Submonoid R} [OreSet S]

theorem ore_left_cancel (r₁ r₂ : R) (s : S) (h : ↑s * r₁ = s * r₂) :
∃ s' : S, r₁ * s' = r₂ * s' := OreSet.ore_left_cancel r₁ r₂ s h

def oreNum (r : R) (s : S) : R :=
OreSet.oreNum r s

def oreDenom (r : R) (s : S) : S :=
OreSet.oreDenom r s

theorem ore_eq (r : R) (s : S) : r * oreDenom r s = s * oreNum r s :=
OreSet.ore_eq r s

def oreCondition (r : R) (s : S) : Σ'r' : R, Σ's' : S, r * s' = s * r' :=
⟨oreNum r s, oreDenom r s, ore_eq r s⟩

instance oreSetBot : OreSet (⊥ : Submonoid R)
where

ore_left_cancel _ _ s h :=
⟨s, by
rcases s with ⟨s, hs⟩
rw [Submonoid.mem_bot] at hs
subst hs
rw [one_mul, one_mul] at h
subst h
rfl⟩

oreNum r _ := r
oreDenom _ s := s
ore_eq _ s := by
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rcases s with ⟨s, hs⟩
rw [Submonoid.mem_bot] at hs
simp [hs]

instance (priority := 100) oreSetComm {R} [CommMonoid R] (S : Submonoid R) :
OreSet S where

ore_left_cancel m n s h := ⟨s, by rw [mul_comm n s, mul_comm m s, h]⟩
oreNum r _ := r
oreDenom _ s := s
ore_eq r s := by rw [mul_comm]

end Monoid

def oreSetOfCancelMonoidWithZero {R : Type*} [CancelMonoidWithZero R]
{S : Submonoid R}
(oreNum : R → S → R) (oreDenom : R → S → S)
(ore_eq : ∀ (r : R) (s : S), r * oreDenom r s = s * oreNum r s) :
OreSet S :=

{ ore_left_cancel := fun _ _ s h =>
⟨s, mul_eq_mul_right_iff.mpr (mul_eq_mul_left_iff.mp h)⟩

oreNum
oreDenom
ore_eq }

def oreSetOfNoZeroDivisors {R : Type*} [Ring R] [NoZeroDivisors R]
{S : Submonoid R}
(oreNum : R → S → R) (oreDenom : R → S → S)
(ore_eq : ∀ (r : R) (s : S), r * oreDenom r s = s * oreNum r s) :
OreSet S :=

letI : CancelMonoidWithZero R := NoZeroDivisors.toCancelMonoidWithZero
oreSetOfCancelMonoidWithZero oreNum oreDenom ore_eq

end OreLocalization
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/- File: Basic.lean -/

import Mathlib.GroupTheory.MonoidLocalization
import Mathlib.Algebra.GroupWithZero.NonZeroDivisors
import Mathlib.RingTheory.OreLocalization.OreSet
import Mathlib.Tactic.NoncommRing

universe u

open OreLocalization

namespace OreLocalization

variable (R : Type*) [Monoid R] (S : Submonoid R) [OreSet S]

def oreEqv : Setoid (R × S) where
r rs rs' := ∃ (u : S) (v : R), rs'.1 * u = rs.1 * v ∧

(rs'.2 : R) * u = rs.2 * v
iseqv := by

refine ⟨fun _ => ⟨1, 1, by simp⟩, ?_, ?_⟩
· rintro ⟨r, s⟩ ⟨r', s'⟩ ⟨u, v, hru, hsu⟩; dsimp only at *
rcases oreCondition (s : R) s' with ⟨r₂, s₂, h₁⟩
rcases oreCondition r₂ u with ⟨r₃, s₃, h₂⟩
have : (s : R) * ((v : R) * r₃) = (s : R) * (s₂ * s₃) := by

rw [← mul_assoc _ (s₂ : R), h₁, mul_assoc, h₂,
← mul_assoc, ← hsu, mul_assoc]

rcases ore_left_cancel (v * r₃) (s₂ * s₃) s this with ⟨w, hw⟩
refine ⟨s₂ * s₃ * w, u * r₃ * w, ?_, ?_⟩ <;>

simp only [Submonoid.coe_mul, ← hw]
· simp only [← mul_assoc, hru]
· simp only [← mul_assoc, hsu]

· rintro ⟨r₁, s₁⟩ ⟨r₂, s₂⟩ ⟨r₃, s₃⟩ ⟨u, v, hur₁, hs₁u⟩
⟨u', v', hur₂, hs₂u⟩

rcases oreCondition v' u with ⟨r', s', h⟩; dsimp only at *
refine ⟨u' * s', v * r', ?_, ?_⟩ <;>

simp only [Submonoid.coe_mul, ← mul_assoc]
· rw [hur₂, mul_assoc, h, ← mul_assoc, hur₁]
· rw [hs₂u, mul_assoc, h, ← mul_assoc, hs₁u]

end OreLocalization

def OreLocalization (R : Type*) [Monoid R] (S : Submonoid R)
[OreSet S] :=

Quotient (OreLocalization.oreEqv R S)

namespace OreLocalization

section Monoid

variable {R : Type*} [Monoid R] {S : Submonoid R}

variable (R S) [OreSet S]
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@[inherit_doc OreLocalization]
scoped syntax:1075 term noWs atomic("[" term "⁻¹" noWs "]") : term
macro_rules | `($R[$S⁻¹]) => ``(OreLocalization $R $S)

attribute [local instance] oreEqv

variable {R S}

def oreDiv (r : R) (s : S) : R[S⁻¹] :=
Quotient.mk' (r, s)

@[inherit_doc]
infixl:70 " /ₒ " => oreDiv

@[elab_as_elim]
protected theorem ind {β : R[S⁻¹] → Prop} (c : ∀ (r : R) (s : S),

β (r /ₒ s)) : ∀ q, β q := by
apply Quotient.ind
rintro ⟨r, s⟩
exact c r s

theorem oreDiv_eq_iff {r₁ r₂ : R} {s₁ s₂ : S} :
r₁ /ₒ s₁ = r₂ /ₒ s₂ ↔ ∃ (u : S) (v : R),
r₂ * u = r₁ * v ∧ (s₂ : R) * u = s₁ * v :=

Quotient.eq''

protected theorem expand (r : R) (s : S) (t : R) (hst : (s : R) * t ∈ S) :
r /ₒ s = r * t /ₒ ⟨s * t, hst⟩ := by

apply Quotient.sound
refine' ⟨s, t * s, _, _⟩ <;> dsimp <;> rw [mul_assoc]

protected theorem expand' (r : R)
(s s' : S) : r /ₒ s = r * s' /ₒ (s * s') :=

OreLocalization.expand r s s' (by norm_cast; apply SetLike.coe_mem)

protected theorem eq_of_num_factor_eq {r r' r₁ r₂ : R} {s t : S}
(h : r * t = r' * t) : r₁ * r * r₂ /ₒ s = r₁ * r' * r₂ /ₒ s := by

rcases oreCondition r₂ t with ⟨r₂', t', hr₂⟩
calc

r₁ * r * r₂ /ₒ s = r₁ * r * r₂ * t' /ₒ (s * t') :=
OreLocalization.expand (r₁ * r * r₂) s t' _

_ = r₁ * r * (r₂ * t') /ₒ (s * t') := by simp [← mul_assoc]
_ = r₁ * r * (t * r₂') /ₒ (s * t') := by rw [hr₂]
_ = r₁ * (r * t) * r₂' /ₒ (s * t') := by simp [← mul_assoc]
_ = r₁ * (r' * t) * r₂' /ₒ (s * t') := by rw [h]
_ = r₁ * r' * (t * r₂') /ₒ (s * t') := by simp [← mul_assoc]
_ = r₁ * r' * (r₂ * t') /ₒ (s * t') := by rw [hr₂]
_ = r₁ * r' * r₂ * t' /ₒ (s * t') := by simp [← mul_assoc]
_ = r₁ * r' * r₂ /ₒ s := (OreLocalization.expand _ _ _ _).symm

def liftExpand {C : Sort*} (P : R → S → C)
( hP : ∀ (r t : R) (s : S) (ht : (s : R) * t ∈ S),
P r s = P (r * t) ⟨s * t, ht⟩) : R[S⁻¹] → C :=

Quotient.lift (fun p : R × S => P p.1 p.2)
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fun (r₁, s₁) (r₂, s₂) ⟨u, v, hr₂, hs₂⟩ => by
dsimp at *
have s₁vS : (s₁ : R) * v ∈ S := by
rw [← hs₂, ← S.coe_mul]
exact SetLike.coe_mem (s₂ * u)

replace hs₂ : s₂ * u = ⟨(s₁ : R) * v, s₁vS⟩
· ext; simp [hs₂]
rw [hP r₁ v s₁ s₁vS, hP r₂ u s₂ (by norm_cast; rwa [hs₂]), hr₂]
simp only [← hs₂]; rfl

@[simp]
theorem liftExpand_of {C : Sort*} {P : R → S → C}

{ hP : ∀ (r t : R) (s : S) (ht : (s : R) * t ∈ S),
P r s = P (r * t) ⟨s * t, ht⟩} (r : R)

(s : S) : liftExpand P hP (r /ₒ s) = P r s :=
rfl

def lift₂Expand {C : Sort*} (P : R → S → R → S → C)
(hP :
∀ (r₁ t₁ : R) (s₁ : S) (ht₁ : (s₁ : R) * t₁ ∈ S)

(r₂ t₂ : R) (s₂ : S) (ht₂ : (s₂ : R) * t₂ ∈ S),
P r₁ s₁ r₂ s₂ =
P (r₁ * t₁) ⟨s₁ * t₁, ht₁⟩ (r₂ * t₂) ⟨s₂ * t₂, ht₂⟩) :

R[S⁻¹] → R[S⁻¹] → C :=
liftExpand

(fun r₁ s₁ => liftExpand (P r₁ s₁) fun r₂ t₂ s₂ ht₂ => by
have := hP r₁ 1 s₁ (by simp) r₂ t₂ s₂ ht₂
simp [this])

fun r₁ t₁ s₁ ht₁ => by
ext x; induction' x using OreLocalization.ind with r₂ s₂
dsimp only
rw [liftExpand_of, liftExpand_of, hP r₁ t₁ s₁ ht₁ r₂ 1 s₂ (by simp)];
simp

@[simp]
theorem lift₂Expand_of {C : Sort*} {P : R → S → R → S → C}

{hP :
∀ (r₁ t₁ : R) (s₁ : S) (ht₁ : (s₁ : R) * t₁ ∈ S) (r₂ t₂ : R) (s₂ : S)

(ht₂ : (s₂ : R) * t₂ ∈ S),
P r₁ s₁ r₂ s₂ = P (r₁ * t₁) ⟨s₁ * t₁, ht₁⟩ (r₂ * t₂) ⟨s₂ * t₂, ht₂⟩}

(r₁ : R) (s₁ : S) (r₂ : R) (s₂ : S) :
lift₂Expand P hP (r₁ /ₒ s₁) (r₂ /ₒ s₂) = P r₁ s₁ r₂ s₂ :=

rfl

private def mul' (r₁ : R) (s₁ : S) (r₂ : R) (s₂ : S) : R[S⁻¹] :=
r₁ * oreNum r₂ s₁ /ₒ (s₂ * oreDenom r₂ s₁)

private theorem mul'_char (r₁ r₂ : R) (s₁ s₂ : S) (u : S) (v : R)
(huv : r₂ * (u : R) = s₁ * v) :
OreLocalization.mul' r₁ s₁ r₂ s₂ = r₁ * v /ₒ (s₂ * u) := by

simp only [mul']
have h₀ := ore_eq r₂ s₁; set v₀ := oreNum r₂ s₁; set u₀ := oreDenom r₂ s₁
rcases oreCondition (u₀ : R) u with ⟨r₃, s₃, h₃⟩
have :=
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calc
(s₁ : R) * (v * r₃) = r₂ * u * r₃ := by rw [← mul_assoc, ← huv]
_ = r₂ * u₀ * s₃ := by rw [mul_assoc, mul_assoc, h₃]
_ = s₁ * (v₀ * s₃) := by rw [← mul_assoc, h₀]

rcases ore_left_cancel _ _ _ this with ⟨s₄, hs₄⟩
symm; rw [oreDiv_eq_iff]
use s₃ * s₄; use r₃ * s₄; simp only [Submonoid.coe_mul]; constructor
· rw [mul_assoc (b := v₀), ← mul_assoc (a := v₀), ← hs₄]

simp only [mul_assoc]
· rw [mul_assoc (b := (u₀ : R)), ← mul_assoc (a := (u₀ : R)), h₃]

simp only [mul_assoc]

protected def mul : R[S⁻¹] → R[S⁻¹] → R[S⁻¹] :=
lift₂Expand mul' fun r₂ p s₂ hp r₁ r s₁ hr => by

have h₁ := ore_eq r₁ s₂
set r₁' := oreNum r₁ s₂
set s₂' := oreDenom r₁ s₂
rcases oreCondition (↑s₂ * r₁') ⟨s₂ * p, hp⟩ with ⟨p', s_star, h₂⟩
dsimp at h₂
rcases oreCondition r (s₂' * s_star) with ⟨p_flat, s_flat, h₃⟩
simp only [S.coe_mul] at h₃
have : r₁ * r * s_flat = s₂ * p * (p' * p_flat) := by
rw [← mul_assoc, ← h₂, ← h₁, mul_assoc, h₃]
simp only [mul_assoc]

rw [mul'_char (r₂ * p) (r₁ * r) ⟨↑s₂ * p, hp⟩ ⟨↑s₁ * r, hr⟩ _ _ this]
clear this
have hsssp : ↑s₁ * ↑s₂' * ↑s_star * p_flat ∈ S := by
rw [mul_assoc, mul_assoc, ← mul_assoc (s₂' : R), ← h₃, ← mul_assoc]
exact S.mul_mem hr (SetLike.coe_mem s_flat)

have : (⟨↑s₁ * r, hr⟩ : S) * s_flat =
⟨s₁ * s₂' * s_star * p_flat, hsssp⟩ := by

ext
simp only [Submonoid.coe_mul]
rw [mul_assoc, h₃, ← mul_assoc, ← mul_assoc]

rw [this]
clear this
rcases ore_left_cancel (p * p') (r₁' * (s_star : R)) s₂

(by simp [← mul_assoc, h₂])
with ⟨s₂'', h₂''⟩

rw [← mul_assoc, mul_assoc r₂, OreLocalization.eq_of_num_factor_eq h₂'']
norm_cast at hsssp ⊢
rw [← OreLocalization.expand _ _ _ hsssp, ← mul_assoc]
apply OreLocalization.expand

instance instMulOreLocalization : Mul R[S⁻¹] :=
⟨OreLocalization.mul⟩

theorem oreDiv_mul_oreDiv {r₁ r₂ : R} {s₁ s₂ : S} :
r₁ /ₒ s₁ * (r₂ /ₒ s₂) = r₁ * oreNum r₂ s₁ /ₒ (s₂ * oreDenom r₂ s₁) :=

rfl

theorem oreDiv_mul_char (r₁ r₂ : R) (s₁ s₂ : S) (r' : R) (s' : S)
(huv : r₂ * (s' : R) = s₁ * r') :
r₁ /ₒ s₁ * (r₂ /ₒ s₂) = r₁ * r' /ₒ (s₂ * s') :=
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mul'_char r₁ r₂ s₁ s₂ s' r' huv

def oreDivMulChar' (r₁ r₂ : R) (s₁ s₂ : S) :
Σ'r' : R, Σ's' : S, r₂ * (s' : R) = s₁ * r' ∧
r₁ /ₒ s₁ * (r₂ /ₒ s₂) = r₁ * r' /ₒ (s₂ * s') :=

⟨oreNum r₂ s₁, oreDenom r₂ s₁, ore_eq r₂ s₁, oreDiv_mul_oreDiv⟩

instance instOneOreLocalization : One R[S⁻¹] :=
⟨1 /ₒ 1⟩

protected theorem one_def : (1 : R[S⁻¹]) = 1 /ₒ 1 :=
rfl

instance : Inhabited R[S⁻¹] :=
⟨1⟩

@[simp]
protected theorem div_eq_one' {r : R} (hr : r ∈ S) : r /ₒ ⟨r, hr⟩ = 1 := by

rw [OreLocalization.one_def, oreDiv_eq_iff]
exact ⟨⟨r, hr⟩, 1, by simp, by simp⟩

@[simp]
protected theorem div_eq_one {s : S} : (s : R) /ₒ s = 1 :=

OreLocalization.div_eq_one' _

protected theorem one_mul (x : R[S⁻¹]) : 1 * x = x := by
induction' x using OreLocalization.ind with r s
simp [OreLocalization.one_def,

oreDiv_mul_char (1 : R) r (1 : S) s r 1 (by simp)]

protected theorem mul_one (x : R[S⁻¹]) : x * 1 = x := by
induction' x using OreLocalization.ind with r s
simp [OreLocalization.one_def, oreDiv_mul_char r 1 s 1 1 s (by simp)]

protected theorem mul_assoc (x y z : R[S⁻¹]) : x * y * z = x * (y * z) := by
induction' x using OreLocalization.ind with r₁ s₁
induction' y using OreLocalization.ind with r₂ s₂
induction' z using OreLocalization.ind with r₃ s₃
rcases oreDivMulChar' r₁ r₂ s₁ s₂ with

⟨ra, sa, ha, ha'⟩; rw [ha']; clear ha'
rcases oreDivMulChar' r₂ r₃ s₂ s₃ with

⟨rb, sb, hb, hb'⟩; rw [hb']; clear hb'
rcases oreCondition rb sa with ⟨rc, sc, hc⟩
rw [oreDiv_mul_char (r₁ * ra) r₃ (s₂ * sa) s₃ rc (sb * sc)

(by
simp only [Submonoid.coe_mul]
rw [← mul_assoc, hb, mul_assoc, hc, ← mul_assoc])]

rw [mul_assoc, ← mul_assoc s₃]
symm; apply oreDiv_mul_char
rw [mul_assoc, hc, ← mul_assoc (b := ra), ← ha, mul_assoc]

instance instMonoidOreLocalization : Monoid R[S⁻¹] :=
{ OreLocalization.instMulOreLocalization,

OreLocalization.instOneOreLocalization with
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one_mul := OreLocalization.one_mul
mul_one := OreLocalization.mul_one
mul_assoc := OreLocalization.mul_assoc }

protected theorem mul_inv (s s' : S) :
((s : R) /ₒ s') * ((s' : R) /ₒ s) = 1 := by

simp [oreDiv_mul_char (s : R) s' s' s 1 1 (by simp)]

@[simp]
protected theorem mul_one_div {r : R} {s t : S} :

(r /ₒ s) * (1 /ₒ t) = r /ₒ (t * s) := by
simp [oreDiv_mul_char r 1 s t 1 s (by simp)]

@[simp]
protected theorem mul_cancel {r : R} {s t : S} :

(r /ₒ s) * ((s : R) /ₒ t) = r /ₒ t := by
simp [oreDiv_mul_char r s s t 1 1 (by simp)]

@[simp]
protected theorem mul_cancel' {r₁ r₂ : R} {s t : S} :

(r₁ /ₒ s) * ((s * r₂) /ₒ t) = (r₁ * r₂) /ₒ t := by
simp [oreDiv_mul_char r₁ (s * r₂) s t r₂ 1 (by simp)]

@[simp]
theorem div_one_mul {p r : R} {s : S} :

(r /ₒ 1) * (p /ₒ s) = (r * p) /ₒ s := by
simp [oreDiv_mul_char r p 1 s p 1 (by simp)]

def numeratorUnit (s : S) : Units R[S⁻¹] where
val := (s : R) /ₒ 1
inv := (1 : R) /ₒ s
val_inv := OreLocalization.mul_inv s 1
inv_val := OreLocalization.mul_inv 1 s

def numeratorHom : R →* R[S⁻¹] where
toFun r := r /ₒ 1
map_one' := rfl
map_mul' _ _ := div_one_mul.symm

theorem numeratorHom_apply {r : R} : numeratorHom r = r /ₒ (1 : S) :=
rfl

theorem numerator_isUnit (s : S) : IsUnit (numeratorHom (s : R) : R[S⁻¹]) :=
⟨numeratorUnit s, rfl⟩

section UMP

variable {T : Type*} [Monoid T]

variable (f : R →* T) (fS : S →* Units T)

variable (hf : ∀ s : S, f s = fS s)

def universalMulHom : R[S⁻¹] →* T
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where
toFun x :=

x.liftExpand (fun r s => f r * ((fS s)⁻¹ : Units T)) fun r t s ht => by
simp only []
have : (fS ⟨s * t, ht⟩ : T) = fS s * f t := by

simp only [← hf, MonoidHom.map_mul]
conv_rhs =>

rw [MonoidHom.map_mul, ← mul_one (f r),
← Units.val_one, ← mul_left_inv (fS s)]

rw [Units.val_mul, ← mul_assoc, mul_assoc _ (fS s : T),
← this, mul_assoc]

simp only [mul_one, Units.mul_inv]
map_one' := by

simp only []; rw [OreLocalization.one_def, liftExpand_of]; simp
map_mul' x y := by

simp only []
induction' x using OreLocalization.ind with r₁ s₁
induction' y using OreLocalization.ind with r₂ s₂
rcases oreDivMulChar' r₁ r₂ s₁ s₂ with ⟨ra, sa, ha, ha'⟩;
rw [ha']; clear ha'

rw [liftExpand_of, liftExpand_of, liftExpand_of]
conv_rhs =>
congr
· skip
congr
rw [← mul_one (f r₂), ← (fS sa).mul_inv, ← mul_assoc,

← hf, ← f.map_mul, ha, f.map_mul]
rw [mul_assoc, mul_assoc, mul_assoc, ← mul_assoc _ (f s₁),

hf s₁, (fS s₁).inv_mul, one_mul,
f.map_mul, mul_assoc, fS.map_mul, ← Units.val_mul]

rfl

theorem universalMulHom_apply {r : R} {s : S} :
universalMulHom f fS hf (r /ₒ s) = f r * ((fS s)⁻¹ : Units T) :=

rfl

theorem universalMulHom_commutes {r : R} :
universalMulHom f fS hf (numeratorHom r) = f r := by

simp [numeratorHom_apply, universalMulHom_apply]

theorem universalMulHom_unique (φ : R[S⁻¹] →* T)
(huniv : ∀ r : R, φ (numeratorHom r) = f r) :
φ = universalMulHom f fS hf := by

ext x; induction' x using OreLocalization.ind with r s
rw [universalMulHom_apply, ← huniv r, numeratorHom_apply,

← mul_one (φ (r /ₒ s)), ← Units.val_one, ← mul_right_inv (fS s),
Units.val_mul, ← mul_assoc, ← hf, ← huniv, ← φ.map_mul,
numeratorHom_apply, OreLocalization.mul_cancel]

end UMP

end Monoid

section CommMonoid
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variable {R : Type*} [CommMonoid R] {S : Submonoid R} [OreSet S]

theorem oreDiv_mul_oreDiv_comm {r₁ r₂ : R} {s₁ s₂ : S} :
r₁ /ₒ s₁ * (r₂ /ₒ s₂) = r₁ * r₂ /ₒ (s₁ * s₂) := by

rw [oreDiv_mul_char r₁ r₂ s₁ s₂ r₂ s₁ (by simp [mul_comm]), mul_comm s₂]

instance : CommMonoid R[S⁻¹] :=
{ OreLocalization.instMonoidOreLocalization with

mul_comm := fun x y => by
induction' x using OreLocalization.ind with r₁ s₁
induction' y using OreLocalization.ind with r₂ s₂
rw [oreDiv_mul_oreDiv_comm, oreDiv_mul_oreDiv_comm,

mul_comm r₁, mul_comm s₁] }

variable (R S)

protected def localizationMap : S.LocalizationMap R[S⁻¹]
where

toFun := numeratorHom
map_one' := rfl
map_mul' r₁ r₂ := by simp
map_units' := numerator_isUnit
surj' z := by

induction' z using OreLocalization.ind with r s
use (r, s); dsimp
rw [numeratorHom_apply, numeratorHom_apply]; simp

exists_of_eq r₁ r₂ := by
dsimp
intro h
rw [numeratorHom_apply, numeratorHom_apply, oreDiv_eq_iff] at h
rcases h with ⟨u, v, h₁, h₂⟩
dsimp at h₂
rw [one_mul, one_mul] at h₂
subst h₂
use u
simpa only [mul_comm] using h₁.symm

protected noncomputable def equivMonoidLocalization :
Localization S ≃* R[S⁻¹] :=

Localization.mulEquivOfQuotient (OreLocalization.localizationMap R S)

end CommMonoid

section Semiring

variable {R : Type*} [Semiring R] {S : Submonoid R} [OreSet S]

private def add'' (r₁ : R) (s₁ : S) (r₂ : R) (s₂ : S) : R[S⁻¹] :=
( r₁ * oreDenom (s₁ : R) s₂ +

r₂ * oreNum (s₁ : R) s₂) /ₒ (s₁ * oreDenom (s₁ : R) s₂)

private theorem add''_char (r₁ : R) (s₁ : S) (r₂ : R) (s₂ : S) (rb : R)
(sb : S) (hb : (s₁ : R) * sb = (s₂ : R) * rb) :
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add'' r₁ s₁ r₂ s₂ = (r₁ * sb + r₂ * rb) /ₒ (s₁ * sb) := by
simp only [add'']
have ha := ore_eq (s₁ : R) s₂
set! ra := oreNum (s₁ : R) s₂ with h
rw [← h] at *
clear h
-- r tilde
set! sa := oreDenom (s₁ : R) s₂ with h
rw [← h] at *
clear h
-- s tilde
rcases oreCondition (sa : R) sb with ⟨rc, sc, hc⟩
-- s*, r*
have : (s₂ : R) * (rb * rc) = s₂ * (ra * sc) := by

rw [← mul_assoc, ← hb, mul_assoc, ← hc, ← mul_assoc, ← mul_assoc, ha]
rcases ore_left_cancel _ _ s₂ this with ⟨sd, hd⟩
-- s#
symm
rw [oreDiv_eq_iff]
use sc * sd
use rc * sd
constructor <;> simp only [Submonoid.coe_mul]
· noncomm_ring

rw [← mul_assoc (a := rb), hd, ← mul_assoc (a := (sa : R)), hc]
noncomm_ring

· rw [mul_assoc (a := (s₁ : R)), ← mul_assoc (a := (sa : R)), hc]
noncomm_ring

attribute [local instance] OreLocalization.oreEqv

private def add' (r₂ : R) (s₂ : S) : R[S⁻¹] → R[S⁻¹] :=
(--plus tilde

Quotient.lift
fun r₁s₁ : R × S => add'' r₁s₁.1 r₁s₁.2 r₂ s₂) <| by

rintro ⟨r₁', s₁'⟩ ⟨r₁, s₁⟩ ⟨sb, rb, hb, hb'⟩
-- s*, r*
rcases oreCondition (s₁' : R) s₂ with ⟨rc, sc, hc⟩
--s~~, r~~
rcases oreCondition rb sc with ⟨rd, sd, hd⟩
-- s#, r#
dsimp at *
rw [add''_char _ _ _ _ rc sc hc]
have : ↑s₁ * ↑(sb * sd) = ↑s₂ * (rc * rd) := by
simp only [Submonoid.coe_mul]
rw [← mul_assoc, hb', mul_assoc, hd, ← mul_assoc, hc, mul_assoc]

rw [add''_char _ _ _ _ (rc * rd : R) (sb * sd : S) this]
simp only [Submonoid.coe_mul]
rw [← mul_assoc (a := r₁) (b := (sb : R)), hb,
mul_assoc (a := r₁') (b := (rb : R)), hd,
← mul_assoc, ← mul_assoc, ← add_mul, oreDiv_eq_iff]

use 1
use rd
constructor
· simp
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· simp only [mul_one, Submonoid.coe_one, Submonoid.coe_mul] at this ⊢
rw [hc, this, mul_assoc]

private theorem add'_comm (r₁ r₂ : R) (s₁ s₂ : S) :
add' r₁ s₁ (r₂ /ₒ s₂) = add' r₂ s₂ (r₁ /ₒ s₁) := by

simp only [add', oreDiv, add'', Quotient.mk', Quotient.lift_mk]
rw [Quotient.eq]
have hb := ore_eq (↑s₂) s₁
set rb := oreNum (↑s₂) s₁
set sb := oreDenom (↑s₂) s₁
have ha := ore_eq (↑s₁) s₂
set ra := oreNum (↑s₁) s₂
set sa := oreDenom (↑s₁) s₂
rcases oreCondition ra sb with ⟨rc, sc, hc⟩
-- r#, s#
have : (s₁ : R) * (rb * rc) = s₁ * (sa * sc) := by

rw [← mul_assoc, ← hb, mul_assoc, ← hc, ← mul_assoc, ← ha, mul_assoc]
rcases ore_left_cancel _ _ s₁ this with ⟨sd, hd⟩
-- s+
use sc * sd
use rc * sd
dsimp
constructor
· rw [add_mul, add_mul, add_comm, mul_assoc (a := r₁) (b := (sa : R)),

← mul_assoc (a := (sa : R)), ← hd, mul_assoc (a := r₂) (b := ra),
← mul_assoc (a := ra) (b := (sc : R)), hc]

simp only [mul_assoc]
· rw [mul_assoc, ← mul_assoc (sa : R), ← hd, hb]

simp only [mul_assoc]

private def add : R[S⁻¹] → R[S⁻¹] → R[S⁻¹] := fun x =>
Quotient.lift (fun rs : R × S => add' rs.1 rs.2 x)

(by
rintro ⟨r₁, s₁⟩ ⟨r₂, s₂⟩ hyz
induction' x using OreLocalization.ind with r₃ s₃
dsimp; rw [add'_comm, add'_comm r₂]
simp [(· /ₒ ·), Quotient.mk', Quotient.sound hyz])

instance instAddOreLocalization : Add R[S⁻¹] :=
⟨add⟩

theorem oreDiv_add_oreDiv {r r' : R} {s s' : S} :
r /ₒ s + r' /ₒ s' =
( r * oreDenom (s : R) s' +

r' * oreNum (s : R) s') /ₒ (s * oreDenom (s : R) s') :=
rfl

theorem oreDiv_add_char {r r' : R} (s s' : S) (rb : R)
(sb : S) (h : (s : R) * sb = s' * rb) :
r /ₒ s + r' /ₒ s' = (r * sb + r' * rb) /ₒ (s * sb) :=

add''_char r s r' s' rb sb h

def oreDivAddChar' (r r' : R) (s s' : S) :
Σ'r'' : R, Σ's'' : S, (s : R) * s'' = s' * r'' ∧
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r /ₒ s + r' /ₒ s' = (r * s'' + r' * r'') /ₒ (s * s'') :=
⟨ oreNum (s : R) s',

oreDenom (s : R) s',
ore_eq (s : R) s',
oreDiv_add_oreDiv⟩

@[simp]
theorem add_oreDiv {r r' : R} {s : S} : r /ₒ s + r' /ₒ s = (r + r') /ₒ s :=

by simp [oreDiv_add_char s s 1 1 (by simp)]

protected theorem add_assoc (x y z : R[S⁻¹]) : x + y + z = x + (y + z) := by
induction' x using OreLocalization.ind with r₁ s₁
induction' y using OreLocalization.ind with r₂ s₂
induction' z using OreLocalization.ind with r₃ s₃
rcases oreDivAddChar' r₁ r₂ s₁ s₂ with

⟨ra, sa, ha, ha'⟩; rw [ha']; clear ha'
rcases oreDivAddChar' r₂ r₃ s₂ s₃ with

⟨rb, sb, hb, hb'⟩; rw [hb']; clear hb'
rcases oreDivAddChar' (r₁ * sa + r₂ * ra) r₃ (s₁ * sa) s₃ with

⟨rc, sc, hc, q⟩; rw [q]; clear q
rcases oreDivAddChar' r₁ (r₂ * sb + r₃ * rb) s₁ (s₂ * sb) with

⟨rd, sd, hd, q⟩; rw [q]; clear q
simp only [right_distrib, mul_assoc, add_assoc]
simp only [← add_oreDiv]
congr 1
· rw [← OreLocalization.expand', ← mul_assoc, ← mul_assoc,

← OreLocalization.expand', ← OreLocalization.expand']
congr 1
· simp_rw [← Submonoid.coe_mul] at ha hd

rw [Subtype.coe_eq_of_eq_mk hd, ← mul_assoc, ← mul_assoc,
← mul_assoc, ← OreLocalization.expand, ← OreLocalization.expand',
Subtype.coe_eq_of_eq_mk ha, ← OreLocalization.expand]

apply OreLocalization.expand'
· rcases oreCondition (sd : R) (sa * sc) with ⟨re, _, _⟩

· simp_rw [← Submonoid.coe_mul] at hb hc hd
rw [← mul_assoc, Subtype.coe_eq_of_eq_mk hc]
rw [← OreLocalization.expand, Subtype.coe_eq_of_eq_mk hd, ← mul_assoc,

← OreLocalization.expand, Subtype.coe_eq_of_eq_mk hb]
apply OreLocalization.expand

private def zero : R[S⁻¹] :=
0 /ₒ 1

instance : Zero R[S⁻¹] :=
⟨zero⟩

protected theorem zero_def : (0 : R[S⁻¹]) = 0 /ₒ 1 :=
rfl

@[simp]
theorem zero_div_eq_zero (s : S) : 0 /ₒ s = 0 := by

rw [OreLocalization.zero_def, oreDiv_eq_iff]
exact ⟨s, 1, by simp⟩
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protected theorem zero_add (x : R[S⁻¹]) : 0 + x = x := by
induction x using OreLocalization.ind
rw [← zero_div_eq_zero, add_oreDiv]; simp

protected theorem add_comm (x y : R[S⁻¹]) : x + y = y + x := by
induction x using OreLocalization.ind
induction y using OreLocalization.ind
change add' _ _ (_ /ₒ _) = _; apply add'_comm

instance instAddCommMonoidOreLocalization : AddCommMonoid R[S⁻¹] :=
{ OreLocalization.instAddOreLocalization with

add_comm := OreLocalization.add_comm
add_assoc := OreLocalization.add_assoc
zero := zero
zero_add := OreLocalization.zero_add
add_zero := fun x => by
rw [OreLocalization.add_comm, OreLocalization.zero_add] }

protected theorem zero_mul (x : R[S⁻¹]) : 0 * x = 0 := by
induction' x using OreLocalization.ind with r s
rw [OreLocalization.zero_def, oreDiv_mul_char 0 r 1 s r 1 (by simp)]; simp

protected theorem mul_zero (x : R[S⁻¹]) : x * 0 = 0 := by
induction' x using OreLocalization.ind with r s
rw [OreLocalization.zero_def, oreDiv_mul_char r 0 s 1 0 1 (by simp)]; simp

protected theorem left_distrib (x y z : R[S⁻¹]) :
x * (y + z) = x * y + x * z := by

induction' x using OreLocalization.ind with r₁ s₁
induction' y using OreLocalization.ind with r₂ s₂
induction' z using OreLocalization.ind with r₃ s₃
rcases oreDivAddChar' r₂ r₃ s₂ s₃ with ⟨ra, sa, ha, q⟩
rw [q]
clear q
rw [OreLocalization.expand' r₂ s₂ sa]
rcases oreDivMulChar' r₁ (r₂ * sa) s₁ (s₂ * sa) with ⟨rb, sb, hb, q⟩
rw [q]
clear q
have hs₃rasb : ↑s₃ * (ra * sb) ∈ S := by

rw [← mul_assoc, ← ha]
norm_cast
apply SetLike.coe_mem

rw [OreLocalization.expand _ _ _ hs₃rasb]
have ha' : ↑(s₂ * sa * sb) = ↑s₃ * (ra * sb) := by simp [ha, ← mul_assoc]
rw [← Subtype.coe_eq_of_eq_mk ha']
rcases oreDivMulChar' r₁ (r₃ * (ra * sb)) s₁ (s₂ * sa * sb) with

⟨rc, sc, hc, hc'⟩
rw [hc']
rw [oreDiv_add_char (s₂ * sa * sb) (s₂ * sa * sb * sc) 1 sc (by simp)]
rw [OreLocalization.expand' (r₂ * ↑sa + r₃ * ra) (s₂ * sa) (sb * sc)]
conv_lhs =>

congr
· skip
congr

144



rw [add_mul, S.coe_mul, ← mul_assoc, hb, ← mul_assoc, mul_assoc r₃,
hc, mul_assoc, ← mul_add]

rw [OreLocalization.mul_cancel']
simp only [mul_one, Submonoid.coe_mul, mul_add, ← mul_assoc]

theorem right_distrib (x y z : R[S⁻¹]) : (x + y) * z = x * z + y * z := by
induction' x using OreLocalization.ind with r₁ s₁
induction' y using OreLocalization.ind with r₂ s₂
induction' z using OreLocalization.ind with r₃ s₃
rcases oreDivAddChar' r₁ r₂ s₁ s₂ with

⟨ra, sa, ha, ha'⟩; rw [ha']; clear ha'; norm_cast at ha
rw [OreLocalization.expand' r₁ s₁ sa]
rw [OreLocalization.expand r₂ s₂ ra (by rw [← ha]; apply SetLike.coe_mem)]
rw [← Subtype.coe_eq_of_eq_mk ha]
repeat rw [oreDiv_mul_oreDiv]
simp only [add_mul, add_oreDiv]

instance instSemiringOreLocalization : Semiring R[S⁻¹] :=
{ OreLocalization.instAddCommMonoidOreLocalization,

OreLocalization.instMonoidOreLocalization with
zero_mul := OreLocalization.zero_mul
mul_zero := OreLocalization.mul_zero
left_distrib := OreLocalization.left_distrib
right_distrib := right_distrib }

section UMP

variable {T : Type*} [Semiring T]

variable (f : R →+* T) (fS : S →* Units T)

variable (hf : ∀ s : S, f s = fS s)

def universalHom : R[S⁻¹] →+* T :=
{

universalMulHom f.toMonoidHom fS
hf with

map_zero' := by
change (universalMulHom f.toMonoidHom fS hf : R[S⁻¹] → T) 0 = 0
rw [OreLocalization.zero_def, universalMulHom_apply]
simp

map_add' := fun x y => by
change (universalMulHom f.toMonoidHom fS hf : R[S⁻¹] → T) (x + y)

= (universalMulHom f.toMonoidHom fS hf : R[S⁻¹] → T) x
+ (universalMulHom f.toMonoidHom fS hf : R[S⁻¹] → T) y

induction' x using OreLocalization.ind with r₁ s₁
induction' y using OreLocalization.ind with r₂ s₂
rcases oreDivAddChar' r₁ r₂ s₁ s₂ with ⟨r₃, s₃, h₃, h₃'⟩
rw [h₃']
clear h₃'
simp only [universalMulHom_apply, RingHom.toMonoidHom_eq_coe,

MonoidHom.coe_coe]
simp only [mul_inv_rev, MonoidHom.map_mul, RingHom.map_add,

RingHom.map_mul, Units.val_mul]
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rw [add_mul, ← mul_assoc, mul_assoc (f r₁), hf, ← Units.val_mul]
simp only [mul_one, mul_right_inv, Units.val_one]
congr 1
rw [mul_assoc]
congr 1
norm_cast at h₃
have h₃' := Subtype.coe_eq_of_eq_mk h₃
rw [← Units.val_mul, ← mul_inv_rev, ← fS.map_mul, h₃']
have hs₂r₃ : ↑s₂ * r₃ ∈ S := by

rw [← h₃]
exact SetLike.coe_mem (s₁ * s₃)

apply (Units.inv_mul_cancel_left (fS s₂) _).symm.trans
conv_lhs =>

congr
· skip
rw [← Units.mul_inv_cancel_left (fS ⟨s₂ * r₃, hs₂r₃⟩) (fS s₂),
mul_assoc, mul_assoc]

congr
· skip
rw [← hf, ← mul_assoc (f s₂), ← f.map_mul]
conv =>
congr
· skip
congr
rw [← h₃]

rw [hf, ← mul_assoc, ← h₃', Units.inv_mul]
rw [one_mul, ← h₃', Units.mul_inv, mul_one] }

theorem universalHom_apply {r : R} {s : S} :
universalHom f fS hf (r /ₒ s) = f r * ((fS s)⁻¹ : Units T) :=

rfl

theorem universalHom_commutes {r : R} :
universalHom f fS hf (numeratorHom r) = f r := by

simp [numeratorHom_apply, universalHom_apply]

theorem universalHom_unique (φ : R[S⁻¹] →+* T) (huniv : ∀ r : R,
φ (numeratorHom r) = f r) : φ = universalHom f fS hf :=

RingHom.coe_monoidHom_injective <| universalMulHom_unique
(RingHom.toMonoidHom f) fS hf (↑φ) huniv

end UMP

end Semiring

section Ring

variable {R : Type*} [Ring R] {S : Submonoid R} [OreSet S]

protected def neg : R[S⁻¹] → R[S⁻¹] :=
liftExpand (fun (r : R) (s : S) => -r /ₒ s) fun r t s ht => by

simp only []
rw [neg_mul_eq_neg_mul, ← OreLocalization.expand]
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instance instNegOreLocalization : Neg R[S⁻¹] :=
⟨OreLocalization.neg⟩

@[simp]
protected theorem neg_def (r : R) (s : S) : -(r /ₒ s) = -r /ₒ s :=

rfl

protected theorem add_left_neg (x : R[S⁻¹]) : -x + x = 0 := by
induction' x using OreLocalization.ind with r s; simp

instance ring : Ring R[S⁻¹] :=
{ OreLocalization.instSemiringOreLocalization,

OreLocalization.instNegOreLocalization with
add_left_neg := OreLocalization.add_left_neg }

open nonZeroDivisors

theorem numeratorHom_inj (hS : S ≤ R⁰) :
Function.Injective (numeratorHom : R → R[S⁻¹]) :=

fun r₁ r₂ h => by
rw [numeratorHom_apply, numeratorHom_apply, oreDiv_eq_iff] at h
rcases h with ⟨u, v, h₁, h₂⟩
simp only [S.coe_one, one_mul] at h₂
rwa [← h₂, mul_cancel_right_mem_nonZeroDivisors

(hS (SetLike.coe_mem u)), eq_comm] at h₁

theorem nontrivial_of_nonZeroDivisors [Nontrivial R] (hS : S ≤ R⁰) :
Nontrivial R[S⁻¹] :=

⟨⟨0, 1, fun h => by
rw [OreLocalization.one_def, OreLocalization.zero_def] at h
apply nonZeroDivisors.coe_ne_zero 1 (numeratorHom_inj hS h).symm⟩⟩

end Ring

noncomputable section DivisionRing

open nonZeroDivisors

open Classical

variable {R : Type*} [Ring R] [Nontrivial R] [OreSet R⁰]

instance nontrivial : Nontrivial R[R⁰⁻¹] :=
nontrivial_of_nonZeroDivisors (refl R⁰)

variable [NoZeroDivisors R]

protected def inv : R[R⁰⁻¹] → R[R⁰⁻¹] :=
liftExpand

(fun r s =>
if hr : r = (0 : R) then (0 : R[R⁰⁻¹])
else s /ₒ ⟨r, fun _ => eq_zero_of_ne_zero_of_mul_right_eq_zero hr⟩)

(by
intro r t s hst
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by_cases hr : r = 0
· simp [hr]
· by_cases ht : t = 0

· exfalso
apply nonZeroDivisors.coe_ne_zero ⟨_, hst⟩
simp [ht, mul_zero]

· simp only [hr, ht, dif_neg, not_false_iff,
or_self_iff, mul_eq_zero]

apply OreLocalization.expand)

instance inv' : Inv R[R⁰⁻¹] :=
⟨OreLocalization.inv⟩

protected theorem inv_def {r : R} {s : R⁰} :
(r /ₒ s)⁻¹ =
if hr : r = (0 : R) then (0 : R[R⁰⁻¹])
else s /ₒ ⟨r, fun _ => eq_zero_of_ne_zero_of_mul_right_eq_zero hr⟩ :=

rfl

protected theorem mul_inv_cancel (x : R[R⁰⁻¹]) (h : x ≠ 0) :
x * x⁻¹ = 1 := by

induction' x using OreLocalization.ind with r s
rw [OreLocalization.inv_def, OreLocalization.one_def]
by_cases hr : r = 0
· exfalso

apply h
simp [hr]

· simp [hr]
apply OreLocalization.div_eq_one'

protected theorem inv_zero : (0 : R[R⁰⁻¹])⁻¹ = 0 := by
rw [OreLocalization.zero_def, OreLocalization.inv_def]
simp

instance divisionRing : DivisionRing R[R⁰⁻¹] :=
{ OreLocalization.nontrivial,

OreLocalization.inv',
OreLocalization.ring with
mul_inv_cancel := OreLocalization.mul_inv_cancel
inv_zero := OreLocalization.inv_zero }

end DivisionRing

end OreLocalization
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